Orthogonal Stability and Nonstability of a Generalized Quartic Functional Equation in Quasi-β-Normed Spaces

被引:2
|
作者
Alessa, Nazek [1 ]
Tamilvanan, K. [2 ]
Loganathan, K. [3 ]
Karthik, T. S. [4 ]
Rassias, John Michael [5 ]
机构
[1] Princess Nourah Bint Abdulrahman Univ, Dept Math Sci, Fac Sci, Riyadh, Saudi Arabia
[2] Govt Arts Coll Men, Dept Math, Krishnagiri 635001, Tamil Nadu, India
[3] Live4Research, Res & Dev Wing, Tiruppur 638106, Tamil Nadu, India
[4] Aditya Coll Engn & Technol, Dept Elect & Commun Engn, Surampalem 533437, Andhra Pradesh, India
[5] Natl & Kapodistrian Univ Athens, Pedag Dept Math & Informat, 4 Agamemnonos Str, Aghia Paraskevi 15342, Attikis, Greece
关键词
HYERS-ULAM STABILITY; APPROXIMATELY LINEAR MAPPINGS;
D O I
10.1155/2021/5577833
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we examine the generalized Hyers-Ulam orthogonal stability of the quartic functional equation in quasi-beta-normed spaces. Moreover, we prove that this functional equation is not stable in a special condition by a counterexample.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Stability of Cauchy-Jensen type functional equation in generalized fuzzy normed spaces
    Gordji, M. Eshaghi
    Khodaei, H.
    Kamyar, M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (08) : 2950 - 2960
  • [42] Stability of Generalized Quadratic Functional Equation in Non-Archimedean Fuzzy Normed Spaces
    Ravi, K.
    Narasimman, P.
    MEMS, NANO AND SMART SYSTEMS, PTS 1-6, 2012, 403-408 : 879 - +
  • [43] On the generalized Ulam-Hyers-Rassias stability for quartic functional equation in modular spaces
    Wongkum, Kittipong
    Kumam, Poom
    Cho, Yeol Je
    Thounthong, Phatiphat
    Chaipunya, Parin
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (04): : 1399 - 1406
  • [44] Stability of Quartic Functional Equations in the Spaces of Generalized Functions
    Lee, Young-Su
    Chung, Soon-Yeong
    ADVANCES IN DIFFERENCE EQUATIONS, 2009,
  • [45] Stability of Quartic Functional Equations in the Spaces of Generalized Functions
    Young-Su Lee
    Soon-Yeong Chung
    Advances in Difference Equations, 2009
  • [46] Stability of the New Generalized Linear Functional Equation in Normed Spaces via the Fixed Point Method in Generalized Metric Spaces
    Aiemsomboon, L.
    Sintunavarat, W.
    THAI JOURNAL OF MATHEMATICS, 2018, 16 : 113 - 124
  • [48] On the Stability of a Cubic Functional Equation in Random Normed Spaces
    Kenary, H. Azadi
    JOURNAL OF MATHEMATICAL EXTENSION, 2009, 4 (01) : 105 - 114
  • [49] Ulam Stability of a Functional Equation in Various Normed Spaces
    Cieplinski, Krzysztof
    SYMMETRY-BASEL, 2020, 12 (07):
  • [50] Approximate septic and octic mappings in quasi-β-normed spaces
    Xu, Tian Zhou
    Rassias, John Michael
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2013, 15 (06) : 1110 - 1119