False Discovery Rate Based on Extreme Values in High Dimension

被引:0
|
作者
Park, Junyong [1 ]
Park, DoHwan [1 ]
Davis, J. Wade [2 ]
机构
[1] Univ Maryland Baltimore Cty, Dept Math & Stat, 1000 Hilltop Circle, Baltimore, MD 21250 USA
[2] Univ Missouri, Biostat & Res Design Grp, 1 Hosp Dr, Columbia, MO 65212 USA
来源
关键词
False discovery rate; Extreme value; High dimension; Sparsity;
D O I
10.1007/978-3-319-34139-2_15
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In recent years, there has been much work done on high dimensional problems in both theory and applications since high dimensional data are getting more common in broad areas such as microarray data analysis. One important issue in multiple testing problems in high dimensional data is controlling the significance level of large scale simultaneous testing to select significant ones among huge number of genes. In many cases, the true null distribution is assumed to be well-known or a parametric distribution so that p-values can be easily calculated. In practice, the true null distribution may be misspecified or different from the assumed distribution. In this paper, we consider a procedure for a FDR based on extreme values which is less sensitive to inaccurate p-values. The normalized forms are assumed to be approximately a standard normal by the central limit theorem (CLT). Comparing to the CLT approximation, we showthat FDR procedurewith extreme values achieves a more accurate simultaneous test level under some weaker conditions on sample sizes. We provide simulation studies and a real data example to compare the performance of our proposed procedure and an existing procedure.
引用
收藏
页码:323 / 337
页数:15
相关论文
共 50 条
  • [21] Nonparametric estimator of false discovery rate based on Bernstein polynomials
    Guan, Zhong
    Wu, Baolin
    Zhao, Hongyu
    STATISTICA SINICA, 2008, 18 (03) : 905 - 923
  • [22] kerfdr: kernel based estimation of the local False Discovery Rate
    Nuel, G.
    Guedj, M.
    Celisse, A.
    Robin, S.
    GENETIC EPIDEMIOLOGY, 2007, 31 (06) : 640 - 640
  • [23] Challenging False Discovery Rate: A Partition Test Based on p Values in Human Case-Control Association Studies
    Ott, Jurg
    Liu, Zhe
    Shen, Yuanyuan
    HUMAN HEREDITY, 2012, 74 (01) : 45 - 50
  • [24] Exact Integral Formulas for False Discovery Rate and the Variance of False Discovery Proportion
    Sadygov, Rovshan G.
    Zhu, Justin X.
    Deberneh, Henock M.
    JOURNAL OF PROTEOME RESEARCH, 2024, 23 (06) : 2298 - 2305
  • [25] High-dimensional false discovery rate control for dependent variables
    Machkour, Jasin
    Muma, Michael
    Palomar, Daniel P.
    SIGNAL PROCESSING, 2025, 234
  • [26] Dependency and false discovery rate: Asymptotics
    Finner, Helmut
    Dickhaus, Thorsten
    Roters, Markus
    ANNALS OF STATISTICS, 2007, 35 (04): : 1432 - 1455
  • [27] False discovery rate in laser studies
    Dong Nguyen
    World Journal of Urology, 2023, 41 : 1707 - 1708
  • [28] Robust estimation of the false discovery rate
    Pounds, Stan
    Cheng, Cheng
    BIOINFORMATICS, 2006, 22 (16) : 1979 - 1987
  • [29] False discovery rate for functional data
    Olsen, Niels Lundtorp
    Pini, Alessia
    Vantini, Simone
    TEST, 2021, 30 (03) : 784 - 809
  • [30] Hunting for Significance With the False Discovery Rate
    Posch, Martin
    Zehetmayer, Sonja
    Bauer, Peter
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2009, 104 (486) : 832 - 840