Synthesis and Cytocompatibility of Collagen/Hydroxyapatite Nanocomposite Scaffold for Bone Tissue Engineering

被引:38
|
作者
Chen, Li [1 ]
Hu, Jingxiao [1 ]
Ran, Jiabing [1 ]
Shen, Xinyu [1 ]
Tong, Hua [1 ]
机构
[1] Wuhan Univ, Key Lab Analyt Chem Biol & Med, Minist Educ, Coll Chem & Mol Sci, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
IN-SITU PRECIPITATION; HYDROXYAPATITE COMPOSITE; THERMAL STABILIZATION; MECHANICAL-PROPERTIES; COLLAGEN; VITRO; MICROSTRUCTURE; FABRICATION; SUBSTITUTE; MORPHOLOGY;
D O I
10.1002/pc.23157
中图分类号
TB33 [复合材料];
学科分类号
摘要
Collagen/hydroxyapatite nanocomposite scaffolds were prepared by in situ precipitation and freeze-drying approach. The synthesized collagen/hydroxyapatite nanocomposites were characterized using various modalities. It was revealed that the inorganic phase in the nanocomposite was carbonate-substituted hydroxyapatite with low crystallinity. Morphology studies showed the uniform distribution of hydroxyapatite particles in the collagen hydrogel. In addition, hydroxyapatite particles were gradually becoming irregular enough and the surface morphology had more wrinkles with the increase of inorganic component. Morphology, mechanical properties and cell biocompatibility of the prepared nanocomposite scaffolds were evaluated. The scaffolds presented a well-developed macropore structure with a pore size ranging from 100 to 200 mu m and the pore size of scaffold can also be regulated by changing the organic/inorganic weight ratio. Furthermore, the growth of MG63 cells on scaffolds showed they could significantly promote the proliferation of cells and could be potential candidate for bone engineering applications. (C) 2014 Society of Plastics Engineers
引用
收藏
页码:81 / 90
页数:10
相关论文
共 50 条
  • [31] 3D construct of hydroxyapatite/zinc oxide/palladium nanocomposite scaffold for bone tissue engineering
    Fatemeh Heidari
    Fahimeh Sadat Tabatabaei
    Mehdi Razavi
    Reza Bazargan Lari
    Mina Tavangar
    Georgios E. Romanos
    Daryoosh Vashaee
    Lobat Tayebi
    Journal of Materials Science: Materials in Medicine, 2020, 31
  • [32] Development of a Biomimetic Collagen-Hydroxyapatite Scaffold for Bone Tissue Engineering Using a SBF Immersion Technique
    Al-Munajjed, Amir A.
    Plunkett, Niamh A.
    Gleeson, John P.
    Weber, Tim
    Jungreuthmayer, Christian
    Levingstone, Tanya
    Hammer, Joachim
    O'Brien, Fergal J.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2009, 90B (02) : 584 - 591
  • [33] Hydroxyapatite coating on an aluminum/bioplastic scaffold for bone tissue engineering
    Jongprateep, Oratai
    Jitanukul, Nonthaporn
    Saphongxay, Khotamy
    Petchareanmongkol, Benjamon
    Bansiddhi, Ampika
    Laobuthee, Apirat
    Lertworasirikul, Amornrat
    Techapiesancharoenkij, Ratchatee
    RSC ADVANCES, 2022, 12 (41) : 26789 - 26799
  • [34] Fish scale derived hydroxyapatite scaffold for bone tissue engineering
    Mondal, B.
    Mondal, S.
    Mondal, A.
    Mandal, N.
    MATERIALS CHARACTERIZATION, 2016, 121 : 112 - 124
  • [35] Preparation and characterization of gelatin/hydroxyapatite nanocomposite for bone tissue engineering
    Ran, Jiabing
    Hu, Jingxiao
    Chen, Li
    Shen, Xinyu
    Tong, Hua
    POLYMER COMPOSITES, 2017, 38 (08) : 1579 - 1590
  • [36] PLGA/collagen/HA nanofibrous scaffold for bone tissue engineering
    Jose, Moncy V.
    Johnson, Kalonda
    Thomas, Vinoy
    Dean, Derrick R.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 233
  • [37] Chitosan-collagen/organomontmorillonite scaffold for bone tissue engineering
    Cao, Xianshuo
    Wang, Jun
    Liu, Min
    Chen, Yong
    Cao, Yang
    Yu, Xiaolong
    FRONTIERS OF MATERIALS SCIENCE, 2015, 9 (04) : 405 - 412
  • [38] A collagen-phosphophoryn sponge as a scaffold for bone tissue engineering
    Iejima, D
    Saito, T
    Uemura, T
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2003, 14 (10) : 1097 - 1103
  • [39] Investigation of a collagen NanoHA scaffold with potential for bone tissue engineering
    Cunniffe, G.
    O'Brien, F. J.
    Dickson, G.
    TISSUE ENGINEERING, 2007, 13 (07): : 1719 - 1719
  • [40] Natural hydroxyapatite/diopside nanocomposite scaffold for bone tissue engineering applications: physical, mechanical, bioactivity and biodegradation evaluation
    Rafiee, Nasrin
    Karbasi, Saeed
    Nourbakhsh, Amir Abbas
    Amini, Kamran
    MATERIALS TECHNOLOGY, 2022, 37 (01) : 36 - 48