Norm-parallelism in classical M-ideals

被引:9
|
作者
Wojcik, Pawel [1 ]
机构
[1] Pedag Univ Cracow, Inst Math, Podchorazych 2, PL-30084 Krakow, Poland
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2017年 / 28卷 / 02期
关键词
Norm-parallelism; M-ideal; Extreme point; Compact operator; COMPACT-OPERATORS; SPACES;
D O I
10.1016/j.indag.2016.07.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, motivated by the results published by Zamani and Moslehian (2016), we study the relation of norm-parallelism for certain operators. The main aim of this paper is to give some characterizations of the norm-parallelism for bounded linear operators between Banach spaces. Further, we show that the notion of norm-parallelism may be related to the invariant subspace problem. (C) 2016 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:287 / 293
页数:7
相关论文
共 50 条
  • [21] Introducing Fuzzy Almost m-Ideals, Fuzzy Generalized Almost m-Ideals and Related Objects in Semigroups
    Munir, M.
    Kausar, N.
    Addis, G. M.
    Salahuddin
    Anjum, R.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2020, 14 (03): : 351 - 372
  • [22] M-Ideals in real operator algebras
    Blecher, David P.
    Neal, Matthew
    Peralta, Antonio M.
    Su, Shanshan
    MATHEMATISCHE NACHRICHTEN, 2025,
  • [23] NOTE ON M-IDEALS IN B(X)
    HENNEFELD, J
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1980, 78 (01) : 89 - 92
  • [24] Norm-parallelism and the Davis-Wielandt radius of Hilbert space operators
    Zamani, Ali
    Moslehian, Mohammad Sal
    Chien, Mao-Ting
    Nakazato, Hiroshi
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (11): : 2147 - 2158
  • [25] M-IDEALS OF COMPACT-OPERATORS
    CHO, CM
    PACIFIC JOURNAL OF MATHEMATICS, 1989, 138 (02) : 237 - 242
  • [26] SOME NATURAL FAMILIES OF M-IDEALS
    GODEFROY, G
    LI, D
    MATHEMATICA SCANDINAVICA, 1990, 66 (02) : 249 - 263
  • [27] A new proof of proximinality for M-ideals
    Indumathi, V.
    Lalithambigai, S.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (04) : 1159 - 1162
  • [28] QUASILINEAR MAPPINGS, M-IDEALS AND POLYHEDRA
    Yost, David
    OPERATORS AND MATRICES, 2012, 6 (02): : 279 - 286
  • [29] M-IDEALS AND QUOTIENTS OF SUBDIAGONAL ALGEBRAS
    POON, YT
    RUAN, ZJ
    JOURNAL OF FUNCTIONAL ANALYSIS, 1992, 105 (01) : 144 - 170
  • [30] FUNCTION-THEORY AND M-IDEALS
    GAMELIN, TW
    MARSHALL, DE
    YOUNIS, R
    ZAME, WR
    ARKIV FOR MATEMATIK, 1985, 23 (02): : 261 - 279