Fermi acceleration and scaling properties of a time dependent oval billiard

被引:37
|
作者
Leonel, Edson D. [1 ]
Oliveira, Diego F. M. [2 ]
Loskutov, Alexander [1 ,3 ]
机构
[1] Univ Estadual Paulista, Dept Estat Matemat Aplicada & Computacao, BR-13506900 Sao Paulo, Brazil
[2] Univ Estadual Paulista, Dept Fis, BR-13506900 Sao Paulo, Brazil
[3] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119899, Russia
基金
巴西圣保罗研究基金会;
关键词
chaos; classical mechanics; geometry; nonlinear dynamical systems; BOUNCER MODEL; DYNAMICS;
D O I
10.1063/1.3227740
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the phenomenon of Fermi acceleration for a classical particle inside an area with a closed boundary of oval shape. The boundary is considered to be periodically time varying and collisions of the particle with the boundary are assumed to be elastic. It is shown that the breathing geometry causes the particle to experience Fermi acceleration with a growing exponent rather smaller as compared to the no breathing case. Some dynamical properties of the particle's velocity are discussed in the framework of scaling analysis.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Fermi acceleration and its suppression in a time-dependent Lorentz gas
    Oliveira, Diego F. M.
    Vollmer, Juergen
    Leonel, Edson D.
    PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (4-5) : 389 - 396
  • [22] Time-dependent particle acceleration in a Fermi reservoir (Research Note)
    Litvinenko, Y. E.
    ASTRONOMY & ASTROPHYSICS, 2012, 544
  • [23] Mechanism of Fermi acceleration in dispersing billiards with time-dependent boundaries
    A. Yu. Loskutov
    A. B. Ryabov
    L. G. Akinshin
    Journal of Experimental and Theoretical Physics, 1999, 89 : 966 - 974
  • [24] An investigation of escape and scaling properties of a billiard system
    Sales, Matheus Rolim
    Borin, Daniel
    da Costa, Diogo Ricardo
    Szezech Jr, Jose Danilo
    Leonel, Edson Denis
    CHAOS, 2024, 34 (11)
  • [25] Tangent Method and Some Dynamical Properties of an Oval-Like Billiard
    da Costa, Diogo Ricardo
    Hansen, Matheus
    Silva, Mario Roberto
    Leonel, Edson D.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2022, 32 (04):
  • [26] PROPERTIES OF FERMI ACCELERATION MAPPINGS
    LICHTENBERG, AJ
    LIEBERMAN, MA
    COHEN, RH
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (08): : 987 - 987
  • [27] Scaling investigation of Fermi acceleration on a dissipative bouncer model
    Prando Livorati, Andre Luis
    Ladeira, Denis Gouvea
    Leonel, Edson D.
    PHYSICAL REVIEW E, 2008, 78 (05):
  • [28] Time-Dependent Circular Billiard
    Howard, J. E.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2009, 2009
  • [29] Decay of energy and suppression of Fermi acceleration in a dissipative driven stadium-like billiard
    Livorati, Andre L. P.
    Caldas, Ibere L.
    Leonel, Edson D.
    CHAOS, 2012, 22 (02)
  • [30] Fermi acceleration with memory-dependent excitation
    Leonel, Edson D.
    Marinho, Eraldo P.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2009, 388 (24) : 4927 - 4935