Fermi acceleration and scaling properties of a time dependent oval billiard

被引:37
|
作者
Leonel, Edson D. [1 ]
Oliveira, Diego F. M. [2 ]
Loskutov, Alexander [1 ,3 ]
机构
[1] Univ Estadual Paulista, Dept Estat Matemat Aplicada & Computacao, BR-13506900 Sao Paulo, Brazil
[2] Univ Estadual Paulista, Dept Fis, BR-13506900 Sao Paulo, Brazil
[3] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119899, Russia
基金
巴西圣保罗研究基金会;
关键词
chaos; classical mechanics; geometry; nonlinear dynamical systems; BOUNCER MODEL; DYNAMICS;
D O I
10.1063/1.3227740
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the phenomenon of Fermi acceleration for a classical particle inside an area with a closed boundary of oval shape. The boundary is considered to be periodically time varying and collisions of the particle with the boundary are assumed to be elastic. It is shown that the breathing geometry causes the particle to experience Fermi acceleration with a growing exponent rather smaller as compared to the no breathing case. Some dynamical properties of the particle's velocity are discussed in the framework of scaling analysis.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Suppressing Fermi acceleration in a two-dimensional non-integrable time-dependent oval-shaped billiard with inelastic collisions
    Oliveira, Diego F. M.
    Leonel, Edson D.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (05) : 1009 - 1020
  • [2] Fermi acceleration on the annular billiard
    Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociěncias e Ciěncias Exatas, UNESP, Avenida 24A, 1515-Bela Vista, 13506-700, Rio Claro, Sao Paulo, Brazil
    Phys. Rev. E Stat. Nonlinear Soft Matter Phys., 2006, 6
  • [3] Thermodynamics of a time-dependent and dissipative oval billiard: A heat transfer and billiard approach
    Leonel, Edson D.
    Camillo Galia, Marcus Vinicius
    Barreiro, Luiz Antonio
    Oliveira, Diego F. M.
    PHYSICAL REVIEW E, 2016, 94 (06)
  • [4] Acceleration in a nonplanar time-dependent billiard
    Raeisi, Sedighe
    Eslami, Parvin
    PHYSICAL REVIEW E, 2016, 94 (02)
  • [5] Exponential Fermi Acceleration in a Switching Billiard
    Karagulyan, Davit
    Zhou, Jing
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 397 (02) : 901 - 935
  • [6] Exponential Fermi Acceleration in a Switching Billiard
    Davit Karagulyan
    Jing Zhou
    Communications in Mathematical Physics, 2023, 397 : 901 - 935
  • [7] SCALING INVARIANCE IN A TIME-DEPENDENT ELLIPTICAL BILLIARD
    Oliveira, Diego F. M.
    Robnik, Marko
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (09):
  • [8] Tunable fermi acceleration in the driven elliptical billiard
    Lenz, F.
    Diakonos, F. K.
    Schmelcher, P.
    PHYSICAL REVIEW LETTERS, 2008, 100 (01)
  • [9] Fermi acceleration on the annular billiard: a simplified version
    de Carvalho, RE
    de Souza, FC
    Leonel, ED
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (14): : 3561 - 3573
  • [10] Suppressing Fermi Acceleration in a Driven Elliptical Billiard
    Leonel, Edson D.
    Bunimovich, Leonid A.
    PHYSICAL REVIEW LETTERS, 2010, 104 (22)