Explicit congruences modulo 2048 for overpartitions

被引:4
|
作者
Xue, Fanggang [1 ]
Yao, Olivia X. M. [1 ]
机构
[1] Jiangsu Univ, Dept Math, Zhenjiang 212013, Jiangsu, Peoples R China
来源
RAMANUJAN JOURNAL | 2021年 / 54卷 / 01期
基金
中国国家自然科学基金;
关键词
Overpartition; Congruences; Newman’ s identity;
D O I
10.1007/s11139-019-00204-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let <overline>p(n) denote the number of overpartitions of n. Recently, a number of congruences modulo powers of 2, 3 and 5 have been discovered. The moduli for these congruences modulo powers of 2 discovered before ranged as high as 1024. In this paper, we establish explicit congruences modulo 2048 for <overline>p(n). In particular, we deduce some strange congruences modulo 2048 for <overline>p(n). For instance, we prove that for n = 0, <overline>p(1820n2 + 1820n
引用
收藏
页码:63 / 77
页数:15
相关论文
共 50 条
  • [21] Congruences modulo powers of 2 for t-colored overpartitions
    S. Shivaprasada Nayaka
    M. S. Mahadeva Naika
    Boletín de la Sociedad Matemática Mexicana, 2022, 28
  • [22] Congruences modulo powers of 2 for l-regular overpartitions
    Adiga, Chandrashekar
    Ranganatha, D.
    JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 2017, 32 (02) : 147 - 163
  • [23] Congruences modulo powers of 2 for t-colored overpartitions
    Nayaka, S. Shivaprasada
    Naika, M. S. Mahadeva
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (03):
  • [24] ON THE RAMANUJAN-TYPE CONGRUENCES MODULO 8 FOR THE OVERPARTITIONS INTO ODD PARTS
    Merca, Mircea
    QUAESTIONES MATHEMATICAE, 2022, 45 (10) : 1567 - 1574
  • [25] Some congruences modulo 2, 8 and 12 for Andrews' singular overpartitions
    Pore, Utpal
    Fathima, S. N.
    NOTE DI MATEMATICA, 2018, 38 (01): : 101 - 114
  • [26] NEW CONGRUENCES MODULO SMALL POWERS OF 2 FOR OVERPARTITIONS INTO ODD PARTS
    Hemanthkumar, B.
    Chandankumar, S.
    MATEMATICKI VESNIK, 2021, 73 (02): : 141 - 148
  • [27] Congruences modulo 16, 32, and 64 for Andrews's singular overpartitions
    Yao, Olivia X. M.
    RAMANUJAN JOURNAL, 2017, 43 (01): : 215 - 228
  • [28] Congruences modulo 16, 32, and 64 for Andrews’s singular overpartitions
    Olivia X. M. Yao
    The Ramanujan Journal, 2017, 43 : 215 - 228
  • [29] SOME NEW INFINITE FAMILIES OF CONGRUENCES MODULO 3 FOR OVERPARTITIONS INTO ODD PARTS
    Xia, Ernest X. W.
    COLLOQUIUM MATHEMATICUM, 2016, 142 (02) : 255 - 266
  • [30] New Ramanujan-like congruences modulo powers of 2 and 3 for overpartitions
    Yao, Olivia X. M.
    Xia, Ernest X. W.
    JOURNAL OF NUMBER THEORY, 2013, 133 (06) : 1932 - 1949