Semaphorin 3A promotes the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells in inflammatory environments by suppressing the Wnt/β-catenin signaling pathway

被引:21
|
作者
Sun, Zhaoze [1 ,2 ,3 ]
Yan, Kaixian [1 ,2 ,3 ]
Liu, Shuang [1 ,2 ,3 ]
Yu, Xijiao [4 ]
Xu, Jingyi [1 ,2 ,3 ]
Liu, Jinhua [1 ,2 ,3 ]
Li, Shu [1 ,2 ,3 ]
机构
[1] Shandong Univ, Sch & Hosp Stomatol, Dept Periodontol, 44-1 Wenhua Rd West, Jinan 250012, Shandong, Peoples R China
[2] Cheeloo Coll Med, Shandong Key Lab Oral Tissue Regenerat Sr, 44-1 Wenhua Rd West, Jinan 250012, Shandong, Peoples R China
[3] Cheeloo Coll Med, Shandong Engn Lab Dent Mat & Oral Tissue Regenera, 44-1 Wenhua Rd West, Jinan 250012, Shandong, Peoples R China
[4] Jinan Stomatol Hosp, Dept Endodont, 101 Jingliu Rd, Jinan 250001, Shandong, Peoples R China
关键词
Semaphorin; 3A; Rat bone marrow-derived mesenchymal stem cells (rBMSCs); Osteogenic differentiation; Lipopolysaccharide (LPS); Wnt/beta-catenin signaling pathway;
D O I
10.1007/s10735-020-09941-1
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
After periodontal treatment, the local inflammatory environment surrounding periodontal tissues cannot be entirely eliminated. The means by which alveolar bone repair and regeneration are promoted in inflammatory environments have important clinical significance. As a powerful protein that promotes the differentiation of osteocytes, semaphorin 3A (Sema3A) shows potential for bone regeneration therapy. However, the effect of Sema3A on osteogenic differentiation in an inflammatory environment, as well as the underlying mechanism, have not yet been explored. We used lentivirus to transduce rat bone marrow-derived mesenchymal stem cells (rBMSCs) to stably overexpress Sema3A. Lipopolysaccharide from Escherichia coli (E. coli LPS) was used to stimulate rBMSCs to establish an inflammatory environment. ALP staining, Alizarin red staining, ALP activity tests, quantitative RT-PCR (qRT-PCR), and Western blotting were used to elucidate the effect of Sema3A on the osteogenesis of rBMSCs in inflammatory environments. XAV939 and LiCl were used to determine whether the Wnt/beta-catenin signaling pathway was involved in attenuating the inhibition of Sema3A-induced osteogenic differentiation by LPS. The qRT-PCR and Western blot results demonstrated that the lentiviral vector (LV-NC) and lentiviral-Sema3A (LV-Sema3A) were successfully transduced into rBMSCs. An inflammatory environment could be established by stimulating rBMSCs with 1 mu g/ml E. coli LPS. After Sema3A overexpression, mineral deposition was exacerbated, and the BSP and Runx2 gene and protein expression levels were increased. Furthermore, E. coli LPS activated the Wnt/beta-catenin signaling pathway and decreased rBMSC osteogenesis, but these effects were attenuated by Sema3A. In conclusion, Sema3A could protect BMSCs from LPS-mediated inhibition of osteogenic differentiation in inflammatory environments by suppressing the Wnt/beta-catenin pathway.
引用
收藏
页码:1245 / 1255
页数:11
相关论文
共 50 条
  • [41] Carnosol induces the osteogenic differentiation of bone marrow-derived mesenchymal stem cells via activating BMP-signaling pathway
    Abdallah, Basem M.
    KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY, 2021, 25 (03): : 197 - 206
  • [42] Silk fibroin/chitosan thin film promotes osteogenic and adipogenic differentiation of rat bone marrow-derived mesenchymal stem cells
    Li, Da-Wei
    He, Jin
    He, Feng-Li
    Liu, Ya-Li
    Liu, Yang-Yang
    Ye, Ya-Jing
    Deng, Xudong
    Yin, Da-Chuan
    JOURNAL OF BIOMATERIALS APPLICATIONS, 2018, 32 (09) : 1164 - 1173
  • [43] Differentiation into neurons of rat bone marrow-derived mesenchymal stem cells
    Ming Guan
    Yaping Xu
    Wei Wang
    Shan Lin
    European Cytokine Network, 2014, 25 : 58 - 63
  • [44] Osteogenic differentiation of human marrow-derived mesenchymal stem cells
    Marie, Pierre J.
    Fromigue, Olivia
    REGENERATIVE MEDICINE, 2006, 1 (04) : 539 - 548
  • [45] Differentiation into neurons of rat bone marrow-derived mesenchymal stem cells
    Guan, Ming
    Xu, Yaping
    Wang, Wei
    Lin, Shan
    EUROPEAN CYTOKINE NETWORK, 2014, 25 (03) : 58 - 63
  • [46] Lamc1 promotes osteogenic differentiation and inhibits adipogenic differentiation of bone marrow-derived mesenchymal stem cells
    Zhao, Lixia
    Liu, Shuai
    Peng, Yanqiu
    Zhang, Jian
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [47] Wnt3a promotes differentiation of human bone marrow-derived mesenchymal stem cells into cementoblast-like cells
    Yusuke Aida
    Hidemi Kurihara
    Koichi Kato
    In Vitro Cellular & Developmental Biology - Animal, 2018, 54 : 468 - 476
  • [48] Insulin growth factor-1 promotes the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells through the Wnt/β-catenin pathway
    Feng, Jing
    Meng, Zhiqiang
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2021, 22 (02)
  • [49] Wnt3a promotes differentiation of human bone marrow-derived mesenchymal stem cells into cementoblast-like cells
    Aida, Yusuke
    Kurihara, Hidemi
    Kato, Koichi
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2018, 54 (06) : 468 - 476
  • [50] Effect of SOX9 on Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells Through WNTβ/Catenin Pathway
    Yang, Qing
    Li, Cheng
    Yan, Manli
    Fang, Chunhua
    JOURNAL OF BIOMATERIALS AND TISSUE ENGINEERING, 2019, 9 (10) : 1429 - 1434