The complete chloroplast genome sequence of wild soybean, Glycine soja

被引:3
|
作者
Gao, Cheng-Wen [1 ,2 ]
Gao, Li-Zhi [2 ,3 ]
机构
[1] Kunming Univ Sci & Technol, Fac Environm Sci & Engn, Kunming 650504, Peoples R China
[2] Kunming Univ Sci & Technol, Fac Life Sci & Technol, Kunming 650093, Peoples R China
[3] Chinese Acad Sci, Kunming Inst Bot, Plant Germplasm & Genom Ctr, Kunming 650204, Peoples R China
关键词
Glycine soja; Chloroplast genome; Next-generation sequencing; Conservation genetics;
D O I
10.1007/s12686-016-0659-z
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Wild soybean Glycine soja is the presumed wild ancestor of cultivated soybean G. max, which harbors abundant and unique gene resources for soybean breeding programs. Here we report the chloroplast genome sequence of G. soja using next-generation sequencing technology. The complete chloroplast genome size is 152,217 bp. The genome includes of a pair of inverted repeats (IRs) of 25,574 bp, which is separated by a large single-copy region of 83,174 bp and a small single-copy region of 17,895 bp. The genome contains a total of 111 unique genes, including 77 protein-coding genes, 30 tRNA genes and 4 rRNA genes. Phylogenomic analysis based on complete chloroplast genome sequences revealed that G. soja is closely related to G. max in the genus Glycine. The newly sequenced complete chloroplast genome of G. soja will provide useful genetic resources that will help to obtain our knowledge of genetic diversity of G. soja and potentially help to conserve the precious natural populations of wild soybean.
引用
收藏
页码:329 / 331
页数:3
相关论文
共 50 条
  • [21] Establishment of a Core Collection for the Chinese annual wild soybean (Glycine Soja)
    ZHAO Limei1
    2. The National Centre of Plant Transgenic Research & Commercializa- tion
    3. School of Life Sciences
    4. Institute of Crop Germplasm Resources
    Chinese Science Bulletin, 2005, (10) : 989 - 996
  • [22] INTERSPECIFIC HYBRIDIZATION OF CULTIVATED AND WILD SOYBEAN SPECIES OF THE SUBGENERA GLYCINE AND SOJA
    SEDOVA, TS
    GENETIKA, 1982, 18 (09): : 1532 - 1536
  • [23] Allelic differentiation of Kunitz trypsin inhibitor in wild soybean (Glycine soja)
    K. J. Wang
    Y. Takahata
    Y. Kono
    N. Kaizuma
    Theoretical and Applied Genetics, 2008, 117 : 565 - 573
  • [24] Genetic diversity and geographical peculiarity of Tibetan wild soybean (Glycine soja)
    Wang, Ke-Jing
    Li, Xiang-Hua
    GENETIC RESOURCES AND CROP EVOLUTION, 2012, 59 (04) : 479 - 490
  • [25] The extent of natural cross-pollination in wild soybean (Glycine soja)
    Fujita, R
    Ohara, M
    Okazaki, K
    Shimamoto, Y
    JOURNAL OF HEREDITY, 1997, 88 (02) : 124 - 128
  • [27] The possible origin of thick stem in Chinese wild soybean (Glycine soja)
    Ke-Jing Wang
    Xiang-Hua Li
    Plant Systematics and Evolution, 2014, 300 : 1079 - 1087
  • [28] The possible origin of thick stem in Chinese wild soybean (Glycine soja)
    Wang, Ke-Jing
    Li, Xiang-Hua
    PLANT SYSTEMATICS AND EVOLUTION, 2014, 300 (05) : 1079 - 1087
  • [29] Establishment of a Core Collection for the Chinese annual wild soybean (Glycine Soja)
    Zhao, LM
    Dong, YS
    Li, B
    Hao, S
    Wang, KJ
    Li, XH
    CHINESE SCIENCE BULLETIN, 2005, 50 (10): : 989 - 996
  • [30] Gene flow and genetic structure of wild soybean (Glycine soja) in Japan
    Kuroda, Yosuke
    Kaga, Akito
    Tomooka, Norihiko
    Vaughan, Duncan A.
    CROP SCIENCE, 2008, 48 (03) : 1071 - 1079