Mixtures of Glyoxylic Acetals and Organic Carbonates as Electrolytes for Lithium-Ion Batteries

被引:12
|
作者
Koeps, L. [1 ,2 ]
Leibing, C. [1 ,2 ]
Hess, L. H. [1 ,2 ]
Balducci, A. [1 ,2 ]
机构
[1] Friedrich Schiller Univ Jena, Inst Tech Chem & Environm Chem, D-07743 Jena, Germany
[2] Friedrich Schiller Univ Jena, Ctr Energy & Environm Chem Jena CEEC Jena, D-07743 Jena, Germany
关键词
ENERGY-STORAGE; SOLVENTS;
D O I
10.1149/1945-7111/abd604
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this work, we report a systematic investigation about the chemical-physical properties of mixtures containing glyoxylic solvents (tetramethoxyglyoxal (TMG) and tetraethoxyglyoxal (TEG)) and organic carbonates, and about the use of these blends as electrolytes for lithium-ion batteries (LIBs). We showed that these mixtures display promising conductivities and viscosities as well as high thermal stability. Furthermore, they also display significantly higher flash points (up to 60 degrees C) than the state-of-the-art LIB electrolytes. These mixtures can be successfully utilized for the realization of lab scale LIBs displaying high stability and good rate capability at high C-rate. Furthermore, LIBs containing this innovative electrolyte display good stability at room temperature as well as at 40 degrees C and 60 degrees C. Considering these results, mixtures of glyoxylic acetals and organic carbonates appear as promising electrolytes for advanced LIBs.
引用
收藏
页数:6
相关论文
共 50 条
  • [11] Bifunctional electrolytes for lithium-ion batteries
    Rectenwald, Michael F.
    Shaffer, Andrew R.
    Protasiewicz, John D.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [12] Electrolytes and additives for lithium-ion batteries
    Abraham, Daniel
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [13] Atomic-Level Modeling of Organic Electrolytes in Lithium-Ion Batteries
    Ferguson, Glen
    Curtiss, Larry A.
    APPLICATIONS OF MOLECULAR MODELING TO CHALLENGES IN CLEAN ENERGY, 2013, 1133 : 217 - +
  • [14] Nonflammable organic electrolytes for high-safety lithium-ion batteries
    Deng, Kuirong
    Zeng, Qingguang
    Wang, Da
    Liu, Zheng
    Wang, Guangxia
    Qiu, Zhenping
    Zhang, Yangfan
    Xiao, Min
    Meng, Yuezhong
    ENERGY STORAGE MATERIALS, 2020, 32 (32) : 425 - 447
  • [15] Thermal instabilities of organic carbonates with discharged cathode materials in lithium-ion batteries
    Ou, Wei-Jie
    Kao, Chen-Shan
    Duh, Yih-Shing
    Hsu, Jing-Ming
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2014, 116 (03) : 1111 - 1116
  • [16] Thermal instabilities of organic carbonates with discharged cathode materials in lithium-ion batteries
    Wei-Jie Ou
    Chen-Shan Kao
    Yih-Shing Duh
    Jing-Ming Hsu
    Journal of Thermal Analysis and Calorimetry, 2014, 116 : 1111 - 1116
  • [17] Electrolytes based on sulfone mixtures for lithium and lithium-ion batteries: the low-temperature properties
    L. V. Sheina
    E. V. Karaseva
    N. V. Shakirova
    V. S. Kolosnitsyn
    Russian Chemical Bulletin, 2023, 72 : 2377 - 2383
  • [18] Electrolytes based on sulfone mixtures for lithium and lithium-ion batteries: the low-temperature properties
    Sheina, L. V.
    Karaseva, E. V.
    Shakirova, N. V.
    Kolosnitsyn, V. S.
    RUSSIAN CHEMICAL BULLETIN, 2023, 72 (10) : 2377 - 2383
  • [19] Organosilicon Functionalized Electrolytes for Lithium-Ion Batteries
    Wang, Jinglun
    Ran, Qin
    Han, Chongyu
    Tang, Zilong
    Chen, Qiduo
    Qin, Xueying
    PROGRESS IN CHEMISTRY, 2020, 32 (04) : 467 - 480
  • [20] Nanostructured Polymer Electrolytes for Lithium-Ion Batteries
    Yoon, Jeong Hoon
    Cho, Won-Jang
    Kang, Tae hui
    Lee, Minjae
    Yi, Gi-Ra
    MACROMOLECULAR RESEARCH, 2021, 29 (08) : 509 - 518