Enhanced electrocatalytic activity and CO2 tolerant Bi0.5Sr0.5Fe1-xTaxO3-δ as cobalt-free cathode for intermediate-temperature solid oxide fuel cells

被引:29
|
作者
Gao, Juntao [1 ]
Li, Qiang [1 ]
Sun, Liping [1 ]
Huo, Lihua [1 ]
Zhao, Hui [1 ]
机构
[1] Heilongiiang Univ, Sch Chem & Mat Sci, Minist Educ, Key Lab Funct Inorgan Mat Chem, Harbin 150080, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Solid oxide fuel cells; Oxygen reduction reaction; Electrocatalytic activity; CO2; tolerance; ELECTROCHEMICAL PERFORMANCE; ELECTRODE PROPERTIES; FREE PEROVSKITE; STABILITY; SR; MN;
D O I
10.1016/j.ceramint.2019.06.295
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
One of the significant motivations in developing intermediate-temperature solid oxide fuel cells (IT-SOFCs) is to design cobalt-free cathodes with high electrocatalytic activity and CO2 tolerance ability. In this work, iron-based perovskite materials Bi0.5Sr0.5Fe1-xTaxO3-delta are investigated as potential cathodes for IT-SOFCs. The effects of Ta doping on crystal structure, thermal expansion coefficients and electrocatalytic activities are systematically evaluated. Among the Ta-doped oxides, Bi0.5Sr0.5Fe0.9Ta0.1O3-delta exhibits the highest electrochemical performance with the lowest polarization resistance (R-p) of 0.12452 Omega cm(2) at 700 degrees C in air. The peak power density of the single cell with Bi0.5Sr0.5Fe0.9Ta0.1O3-delta cathode reaches 1.36 W cm(-2) at 700 degrees C. Compared to Bi0.5Sr0.5FeO3-delta, the improved CO2 tolerance of Ta-doped oxides can be attributed to the high acidity of Ta5+ cations and the increased average metal bond energy (ABE) within the material. Further study proves that the adsorption-dissociation process of molecular oxygen is the limiting step for oxygen reduction reaction (ORR) on Bi0.5Sr0.5Fe0.9Ta0.1O3-delta cathode.
引用
收藏
页码:20226 / 20233
页数:8
相关论文
共 50 条
  • [11] Electrochemical Performance of Cobalt-free Nd0.5Ba0.5Fe1-xNixO3-δ Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells
    Shi, H.
    Ding, Z.
    Ma, G.
    FUEL CELLS, 2016, 16 (02) : 258 - 262
  • [12] Layered GdBa0.5Sr0.5Co2O5+δ as a cathode for intermediate-temperature solid oxide fuel cells
    Zhang, Xiuling
    Jin, Meifang
    JOURNAL OF POWER SOURCES, 2010, 195 (04) : 1076 - 1078
  • [13] Intermediate-temperature solid oxide fuel cell with Ba0.5Sr0.5Co0.8Fe0.2O3-δ cathode
    Duan, ZS
    Yan, AY
    Dong, YL
    Cong, Y
    Cheng, MJ
    Yang, WS
    CHINESE JOURNAL OF CATALYSIS, 2005, 26 (10) : 829 - 831
  • [14] A high-performance, cobalt-free cathode for intermediate-temperature solid oxide fuel cells with excellent CO2 tolerance
    Bu, Yun-fei
    Zhong, Qin
    Chen, Dong-Chang
    Chen, Yu
    Lai, Samson Yuxiu
    Wei, Tao
    Sun, Hai-bin
    Ding, Dong
    Liu, Meilin
    JOURNAL OF POWER SOURCES, 2016, 319 : 178 - 184
  • [15] Systematic evaluation of cobalt-free Ln0.5Sr0.5Fe0.8Cu0.2O3-δ (Ln = La, Pr, and Nd) as cathode materials for intermediate-temperature solid oxide fuel cells
    Pang, Shengli
    Wang, Wenzhi
    Chen, Tao
    Shen, Xiangqian
    Wang, Yonggang
    Xu, Kaijie
    Xi, Xiaoming
    JOURNAL OF POWER SOURCES, 2016, 326 : 176 - 181
  • [16] Investigation of cobalt-free cathode material Sm0.5Sr0.5Fe0.8Cu0.2O3-δ for intermediate temperature solid oxide fuel cell
    Ling, Yihan
    Zhao, Ling
    Lin, Bin
    Dong, Yingchao
    Zhang, Xiaozhen
    Meng, Guangyao
    Liu, Xingqin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (13) : 6905 - 6910
  • [17] High activity and stability of cobalt-free SmBa0.5Sr0.5Fe2O5+δ perovskite oxide as cathode material for solid oxide fuel cells
    Guo, Dong
    Li, Aoye
    Lu, Chunling
    Qiu, Dongchao
    Niu, Bingbing
    Wang, Biao
    CERAMICS INTERNATIONAL, 2023, 49 (21) : 34277 - 34290
  • [18] Cobalt-free perovskite Ln0.5Sr0.5Fe0.8Cu0.2O3-δ (Ln = Pr, Nd, Sm, and Gd) as cathode for intermediate-temperature solid oxide fuel cell
    Xinmin Fu
    Minghui Liu
    Xiangwei Meng
    Shiquan Lü
    Danyang Wang
    Yihong Zhang
    Hongbo Liu
    Mingxing Song
    Zhiwei Li
    Lizhong Wang
    Ionics, 2020, 26 : 1285 - 1295
  • [19] Cobalt-free perovskite Ln0.5Sr0.5Fe0.8Cu0.2O3-δ (Ln = Pr, Nd, Sm, and Gd) as cathode for intermediate-temperature solid oxide fuel cell
    Fu, Xinmin
    Liu, Minghui
    Meng, Xiangwei
    Lu, Shiquan
    Wang, Danyang
    Zhang, Yihong
    Liu, Hongbo
    Song, Mingxing
    Li, Zhiwei
    Wang, Lizhong
    IONICS, 2020, 26 (03) : 1285 - 1295
  • [20] Investigation of cobalt-free cathode material Sm0.5Sr 0.5Fe0.8Cu0.2O3-δ for intermediate temperature solid oxide fuel cell
    CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China , Hefei, Anhui 230026, China
    不详
    Int J Hydrogen Energy, 13 (6905-6910):