Comparative study on ChIP-seq data: normalization and binding pattern characterization

被引:42
|
作者
Taslim, Cenny [1 ,2 ]
Wu, Jiejun [1 ]
Yan, Pearlly [1 ]
Singer, Greg [1 ]
Parvin, Jeffrey [3 ,4 ]
Huang, Tim [1 ]
Lin, Shili [2 ]
Huang, Kun [3 ,4 ]
机构
[1] Ohio State Univ, Dept Mol Virol Immunol & Med Genet, Columbus, OH 43210 USA
[2] Ohio State Univ, Dept Stat, Columbus, OH 43210 USA
[3] Ohio State Univ, Dept Biomed Informat, Columbus, OH 43210 USA
[4] Ohio State Univ, OSUCCC Biomed Informat Shared Resources, Columbus, OH 43210 USA
关键词
GENOME-WIDE ANALYSIS; ESTROGEN-RECEPTOR; GENE-EXPRESSION; METHYLATION; DESIGN; CELLS;
D O I
10.1093/bioinformatics/btp384
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Antibody-based Chromatin Immunoprecipitation assay followed by high-throughput sequencing technology (ChIP-seq) is a relatively new method to study the binding patterns of specific protein molecules over the entire genome. ChIP-seq technology allows scientist to get more comprehensive results in shorter time. Here, we present a non-linear normalization algorithm and a mixture modeling method for comparing ChIP-seq data from multiple samples and characterizing genes based on their RNA polymerase II (Pol II) binding patterns. Results: We apply a two-step non-linear normalization method based on locally weighted regression (LOESS) approach to compare ChIP-seq data across multiple samples and model the difference using an Exponential-Normal(K) mixture model. Fitted model is used to identify genes associated with differential binding sites based on local false discovery rate (fdr). These genes are then standardized and hierarchically clustered to characterize their Pol II binding patterns. As a case study, we apply the analysis procedure comparing normal breast cancer (MCF7) to tamoxifen-resistant (OHT) cell line. We find enriched regions that are associated with cancer (P < 0.0001). Our findings also imply that there may be a dysregulation of cell cycle and gene expression control pathways in the tamoxifen-resistant cells. These results show that the non-linear normalization method can be used to analyze ChIP-seq data across multiple samples.
引用
收藏
页码:2334 / 2340
页数:7
相关论文
共 50 条
  • [41] Integrating ChIP-seq with other functional genomics data
    Jiang, Shan
    Mortazavi, Ali
    [J]. BRIEFINGS IN FUNCTIONAL GENOMICS, 2018, 17 (02) : 104 - 115
  • [42] ChIP-PED enhances the analysis of ChIP-seq and ChIP-chip data
    Wu, George
    Yustein, Jason T.
    McCall, Matthew N.
    Zilliox, Michael
    Irizarry, Rafael A.
    Zeller, Karen
    Dang, Chi V.
    Ji, Hongkai
    [J]. BIOINFORMATICS, 2013, 29 (09) : 1182 - 1189
  • [43] seqMINER: an integrated ChIP-seq data interpretation platform
    Ye, Tao
    Krebs, Arnaud R.
    Choukrallah, Mohamed-Amin
    Keime, Celine
    Plewniak, Frederic
    Davidson, Irwin
    Tora, Laszlo
    [J]. NUCLEIC ACIDS RESEARCH, 2011, 39 (06) : e35
  • [44] Transcription Factor Binding Site Mapping Using ChIP-Seq
    Jaini, Suma
    Lyubetskaya, Anna
    Gomes, Antonio
    Peterson, Matthew
    Park, Sang Tae
    Raman, Sahadevan
    Schoolnik, Gary
    Galagan, James
    [J]. MICROBIOLOGY SPECTRUM, 2014, 2 (02):
  • [45] Ancestral transcriptome inference based on RNA-Seq and ChIP-seq data
    Yang, Jingwen
    Ruan, Hang
    Zou, Yangyun
    Su, Zhixi
    Gu, Xun
    [J]. METHODS, 2020, 176 : 99 - 105
  • [46] Inferring intra-motif dependencies of DNA binding sites from ChIP-seq data
    Eggeling, Ralf
    Roos, Teemu
    Myllymaki, Petri
    Grosse, Ivo
    [J]. BMC BIOINFORMATICS, 2015, 16
  • [47] Transcription factor binding predictions using TRAP for the analysis of ChIP-seq data and regulatory SNPs
    Morgane Thomas-Chollier
    Andrew Hufton
    Matthias Heinig
    Sean O'Keeffe
    Nassim El Masri
    Helge G Roider
    Thomas Manke
    Martin Vingron
    [J]. Nature Protocols, 2011, 6 : 1860 - 1869
  • [48] Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data
    Valouev, Anton
    Johnson, David S.
    Sundquist, Andreas
    Medina, Catherine
    Anton, Elizabeth
    Batzoglou, Serafim
    Myers, Richard M.
    Sidow, Arend
    [J]. NATURE METHODS, 2008, 5 (09) : 829 - 834
  • [49] A survey of motif finding Web tools for detecting binding site motifs in ChIP-Seq data
    Tran, Ngoc Tam L.
    Huang, Chun-Hsi
    [J]. BIOLOGY DIRECT, 2014, 9
  • [50] Transcription factor binding predictions using TRAP for the analysis of ChIP-seq data and regulatory SNPs
    Thomas-Chollier, Morgane
    Hufton, Andrew
    Heinig, Matthias
    O'Keeffe, Sean
    El Masri, Nassim
    Roider, Helge G.
    Manke, Thomas
    Vingron, Martin
    [J]. NATURE PROTOCOLS, 2011, 6 (12) : 1860 - 1869