Synthesis of zeolite-supported microscale zero-valent iron for the removal of Cr6+ and Cd2+ from aqueous solution

被引:73
|
作者
Kong, Xiangke [1 ,2 ]
Han, Zhantao [1 ,2 ]
Zhang, Wei [1 ,2 ]
Song, Le [1 ,2 ]
Li, Hui [1 ,2 ]
机构
[1] CAGS, Inst Hydrogeol & Environm Geol, Shijiazhuang 050061, Peoples R China
[2] Key Lab Groundwater Contaminat Remediat, Shijiazhuang 050061, Peoples R China
基金
中国国家自然科学基金;
关键词
Zeolite-supported microscale zero-valent iron (Z-mZVI); Synthesis; Heavy metals; Removal mechanism; PERMEABLE REACTIVE BARRIERS; GROUNDWATER REMEDIATION; HEAVY-METALS; WASTE-WATER; NANOSCALE; CHROMIUM; CADMIUM; CR(VI); PARTICLES; BENTONITE;
D O I
10.1016/j.jenvman.2015.12.022
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Zeolite-supported microscale zero-valent iron (Z-mZVI) was synthesized and used to remove heavy metal cation (Cd2+) and anion (Cr6+) from aqueous solution. Transmission electron microscope (TEM) confirmed that mZVI (100-200 nm) has been successfully loaded and efficiently dispersed on zeolite. Atomic absorption Spectroscopy (AAS) revealed the amount of stabilized mZVI was about 13 wt.%. The synthesized Z-mZVI has much higher reduction ability and adsorption capacity for Cr6+ and Cd2+ compared to bare nanoscale zero-valent iron (nZVI) and zeolite. Above 77% Cr6+ and 99% Cd2+ were removed by Z-mZVI, while only 45% Cr6+ and 99% Cd2+ were removed by the same amount iron of nZVI, and 1% Cr6+ and 39% Cd2+ were removed by zeolite alone with an initial concentration of 20 mg/L Cr6+ and 200 mg/L Cd2+. The removal of Cr6+ by Z-mZVI follows the pseudo first-order kinetics model, and Xray photoelectron spectroscopy (XPS) analysis confirmed that Cr6+ was reduced to Cr3+ and immobilized on the surface of Z-mZVI. The removal mechanisms for Cr6+ include reduction, adsorption of Cr3+ hydroxides and/or mixed Fe3+/Cr3+ (oxy)hydroxides. The pseudo-second-order kinetic model indicated that chemical sorption might be rate-limiting in the sorption of Cd2+ by Z-mZVI. This synthesized Z-mZVI has shown the potential as an efficient and promising reactive material for removing various heavy metals from wastewater or polluted groundwater. (C) 2015 Published by Elsevier Ltd.
引用
收藏
页码:84 / 90
页数:7
相关论文
共 50 条
  • [31] Removal of methyl orange from aqueous solution using bentonite-supported nanoscale zero-valent iron
    Chen, Zheng-xian
    Jin, Xiao-ying
    Chen, Zuliang
    Megharaj, Mallavarapu
    Naidu, Ravendra
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2011, 363 (02) : 601 - 607
  • [32] Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution: Kinetics and mechanism
    Bhowmick, Subhamoy
    Chakraborty, Sudipta
    Mondal, Priyanka
    Van Renterghem, Wouter
    Van den Berghe, Sven
    Roman-Ross, Gabriela
    Chatterjee, Debashis
    Iglesias, Monica
    CHEMICAL ENGINEERING JOURNAL, 2014, 243 : 14 - 23
  • [33] Comprehensive study on the removal of chromate from aqueous solution by synthesized kaolin supported nanoscale zero-valent iron
    Wang, Chuan
    Xu, Zhen
    Ding, Gang
    Wang, Xianxiang
    Zhao, Maojun
    Ho, Steven Sai Hang
    Li, Yunchun
    DESALINATION AND WATER TREATMENT, 2016, 57 (11) : 5065 - 5078
  • [34] Graphene-supported nanoscale zero-valent iron: Removal of phosphorus from aqueous solution and mechanistic study
    Liu, Fenglin
    Yang, JingHe
    Zuo, Jiane
    Ma, Ding
    Gan, Lili
    Xie, Bangmi
    Wang, Pei
    Yang, Bo
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2014, 26 (08) : 1751 - 1762
  • [35] Removal of uranium(VI) from aqueous solution using nanoscale zero-valent iron supported on activated charcoal
    Daqian Liu
    Zhirong Liu
    Changfu Wang
    Yi Lai
    Journal of Radioanalytical and Nuclear Chemistry, 2016, 310 : 1131 - 1137
  • [36] Graphene oxide-supported nanoscale zero-valent iron composites for the removal of atrazine from aqueous solution
    Xing, Rong
    He, Jingjing
    Hao, Pulin
    Zhou, Wenjun
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2020, 589
  • [37] Removal of uranium(VI) from aqueous solution using nanoscale zero-valent iron supported on activated charcoal
    Liu, Daqian
    Liu, Zhirong
    Wang, Changfu
    Lai, Yi
    JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2016, 310 (03) : 1131 - 1137
  • [38] Removal of nitrobenzene from aqueous solution by a novel clay-supported nanoscale zero-valent iron material
    Jia, Shengrong
    Hao, Aimin
    Dang, Qiuling
    Xia, Xunfeng
    Gong, Bin
    Li, Xiaoguang
    Li, Rui
    Zhao, Ying
    PROCEEDINGS OF THE 2016 7TH INTERNATIONAL CONFERENCE ON MECHATRONICS, CONTROL AND MATERIALS (ICMCM 2016), 2016, 104 : 15 - 17
  • [39] Graphene-supported nanoscale zero-valent iron:Removal of phosphorus from aqueous solution and mechanistic study
    Fenglin Liu
    JingHe Yang
    Jiane Zuo
    Ding Ma
    Lili Gan
    Bangmi Xie
    Pei Wang
    Bo Yang
    Journal of Environmental Sciences, 2014, 26 (08) : 1751 - 1762
  • [40] Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution
    Dong, Haoran
    Deng, Junmin
    Xie, Yankai
    Zhang, Cong
    Jiang, Zhao
    Cheng, Yujun
    Hou, Kunjie
    Zeng, Guangming
    JOURNAL OF HAZARDOUS MATERIALS, 2017, 332 : 79 - 86