A generalization of the concept of q-fractional integrals

被引:21
|
作者
Rajkovic, Predrag M. [1 ]
Marinkovic, Sladjana D. [2 ]
Stankovic, Miomir S. [3 ]
机构
[1] Univ Nis, Fac Mech Engn, Nish 18000, Serbia
[2] Univ Nis, Fac Elect Engn, Nish 18000, Serbia
[3] Univ Nis, Fac Occupat Safety, Nish 18000, Serbia
关键词
basic hypergeometric functions; q-integral; q-derivative; fractional integrals; Mittag-Leffler function; Q-DERIVATIVES;
D O I
10.1007/s10114-009-8253-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the fractional q-integral with variable lower limit of integration. We prove the semigroup property of these integrals, and a formula of Leibniz type. Finally, we evaluate fractional q-integrals of some functions. The consideration of q-exponential function in that sense leads to q-analogs of Mittag-Leffler function.
引用
收藏
页码:1635 / 1646
页数:12
相关论文
共 50 条
  • [41] Study of New Class of q-Fractional Integral Operator
    Momenzadeh, M.
    Mahmudov, N. I.
    FILOMAT, 2019, 33 (17) : 5713 - 5721
  • [42] Analysis of q-fractional coupled implicit systems involving the nonlocal Riemann-Liouville and Erdelyi-Kober q-fractional integral conditions
    Alam, Mehboob
    Khalid, Khansa Hina
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (12) : 12711 - 12734
  • [43] A method for solving differential equations of q-fractional order
    Koca, Ilknur
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 266 : 1 - 5
  • [44] q-Fractional calculus for Rubin’s q-difference operator
    Zeinab SI Mansour
    Advances in Difference Equations, 2013
  • [45] An efficient numerical method for q-fractional differential equations
    Lyu, Pin
    Vong, Seakweng
    APPLIED MATHEMATICS LETTERS, 2020, 103
  • [46] Stability of q-fractional non-autonomous systems
    Jarad, Fahd
    Abdeljawad, Thabet
    Baleanu, Dumitru
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (01) : 780 - 784
  • [47] Successive approximation method for Caputo q-fractional IVPs
    Salahshour, Soheil S
    Ahmadian, Ali
    Chan, Chee Seng
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 24 (1-3) : 153 - 158
  • [48] Analytical solutions of q-fractional differential equations with proportional derivative
    Alderremy, Aisha Abdullah
    Belaghi, Mahmoud Jafari Shah
    Saad, Khaled Mohammed
    Allahviranloo, Tofigh
    Ahmadian, Ali
    Aly, Shaban
    Salahshour, Soheil
    AIMS MATHEMATICS, 2021, 6 (06): : 5737 - 5749
  • [49] Extension of q-fractional integral and derivative operator and study of their properties
    Momenzadeh, Mohammad
    THIRD INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2019), 2019, 2183
  • [50] A Numerical Approach to Solve the q-Fractional Boundary Value Problems
    Sheng, Ying
    Zhang, Tie
    FRACTAL AND FRACTIONAL, 2022, 6 (04)