A self-avoiding walk with attractive interactions

被引:9
|
作者
Ueltschi, D [1 ]
机构
[1] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
关键词
self-avoiding random walks; lace expansion;
D O I
10.1007/s004400200209
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A self-avoiding walk with small attractive interactions is described here. The existence of the connective constant is established, and the diffusive behavior is proved using the method of the lace expansion.
引用
收藏
页码:189 / 203
页数:15
相关论文
共 50 条
  • [21] Spectrum of self-avoiding walk exponents
    Phys Rev E., 1-B pt B (738):
  • [22] The Self-avoiding Walk Spanning a Strip
    Ben Dyhr
    Michael Gilbert
    Tom Kennedy
    Gregory F. Lawler
    Shane Passon
    Journal of Statistical Physics, 2011, 144 : 1 - 22
  • [23] TRUE SELF-AVOIDING WALK ON FRACTALS
    DAURIAC, JCA
    RAMMAL, R
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (01): : L15 - L20
  • [24] Self-avoiding walk on the complete graph
    Slade, Gordon
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2020, 72 (04) : 1189 - 1200
  • [25] A SELF-AVOIDING RANDOM-WALK
    LAWLER, GF
    DUKE MATHEMATICAL JOURNAL, 1980, 47 (03) : 655 - 693
  • [26] A SOLUBLE SELF-AVOIDING WALK PROBLEM
    KASTELEYN, PW
    PHYSICA, 1963, 29 (12): : 1329 - +
  • [27] RENORMALIZATION OF THE TRUE SELF-AVOIDING WALK
    OBUKHOV, SP
    PELITI, L
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (05): : L147 - L151
  • [28] SELF-AVOIDING WALK MODEL FOR PROTEINS
    YANG, YS
    LIU, Y
    LAM, PM
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1985, 59 (04): : 445 - 447
  • [29] Spectrum of self-avoiding walk exponents
    Douglas, J
    Guttman, CM
    Mah, A
    Ishinabe, T
    PHYSICAL REVIEW E, 1997, 55 (01) : 738 - 749
  • [30] The Renormalization Group and Self-avoiding Walk
    Brydges, David
    RANDOM WALKS, RANDOM FIELDS, AND DISORDERED SYSTEMS, 2015, 2144 : 65 - 116