Class-wise Deep Dictionaries for EEG Classification

被引:0
|
作者
Khurana, Prerna [1 ]
Majumdar, Angshul [1 ]
Ward, Rabab [2 ]
机构
[1] IIIT Delhi, New Delhi, India
[2] Univ British Columbia, Vancouver, BC, Canada
关键词
dictionary learning; deep learning; EEG; K-SVD; SPARSE; ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work we propose a classification framework called class-wise deep dictionary learning (CWDDL). For each class, multiple levels of dictionaries are learnt using features from the previous level as inputs (for first level the input is the raw training sample). It is assumed that the cascaded dictionaries form a basis for expressing test samples for that class. Based on this assumption sparse representation based classification is employed. Benchmarking experiments have been carried out on some deep learning datasets (MNIST and its variations, CIFAR and SVHN); our proposed method has been compared with Deep Belief Network (DBN), Stacked Autoencoder, Convolutional Neural Net (CNN) and Label Consistent KSVD (dictionary learning). We find that our proposed method yields better results than these techniques and requires much smaller run-times. The technique is applied for Brain Computer Interface (BCI) classification problems using EEG signals. For this problem our method performs significantly better than Convolutional Deep Belief Network(CDBN).
引用
收藏
页码:3556 / 3563
页数:8
相关论文
共 50 条
  • [41] PCA: Progressive class-wise attention for skin lesions diagnosis
    Naveed, Asim
    Naqvi, Syed S.
    Khan, Tariq M.
    Razzak, Imran
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 127
  • [42] Discovering Class-wise Trends of Max-pooling in Subspace
    Zheng, Yuchen
    Iwana, Brian Kenji
    Uchida, Seiichi
    PROCEEDINGS 2018 16TH INTERNATIONAL CONFERENCE ON FRONTIERS IN HANDWRITING RECOGNITION (ICFHR), 2018, : 98 - 103
  • [43] GeoHard: Towards Measuring Class-wise Hardness through Modelling Class Semantics
    Cai, Fengyu
    Zhao, Xinran
    Zhang, Hongming
    Gurevych, Iryna
    Koeppl, Heinz
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: ACL 2024, 2024, : 5571 - 5597
  • [44] Neural Networks Classify through the Class-Wise Means of Their Representations
    Seddik, Mohamed El Amine
    Tamaazousti, Mohamed
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 8204 - 8211
  • [45] Unsupervised Domain Adaptation Using Robust Class-Wise Matching
    Zhang, Lei
    Wang, Peng
    Wei, Wei
    Lu, Hao
    Shen, Chunhua
    van den Hengel, Anton
    Zhang, Yanning
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (05) : 1339 - 1349
  • [46] Extensions of LDA by PCA mixture model and class-wise features
    Kim, HC
    Kim, D
    Bang, SY
    8TH INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING, VOLS 1-3, PROCEEDING, 2001, : 387 - 392
  • [47] Alleviating Class-Wise Gradient Imbalance for Pulmonary Airway Segmentation
    Zheng, Hao
    Qin, Yulei
    Gu, Yun
    Xie, Fangfang
    Yang, Jie
    Sun, Jiayuan
    Yang, Guang-Zhong
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (09) : 2452 - 2462
  • [48] SeNPIS: Sequential Network Pruning by class-wise Importance Score
    Pachon, Cesar G.
    Ballesteros, Dora M.
    Renza, Diego
    APPLIED SOFT COMPUTING, 2022, 129
  • [49] Extensions of LDA by PCA mixture model and class-wise features
    Kim, HC
    Kim, D
    Bang, SY
    PATTERN RECOGNITION, 2003, 36 (05) : 1095 - 1105
  • [50] Instance-wise or Class-wise? A Tale of Neighbor Shapley for Concept-based Explanation
    Li, Jiahui
    Kuang, Kun
    Li, Lin
    Chen, Long
    Zhang, Songyang
    Shao, Jian
    Xiao, Jun
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 3664 - 3672