Synthesis of ultrathin porous C3N4-modified Co3O4 nanosheets for enhanced oxygen evolution reaction

被引:14
|
作者
Wang, Huan [1 ]
Liu, Yanming [1 ]
Sun, Zhonghua [1 ]
Ren, Jianhai [1 ]
Zou, Xiaoran [1 ]
Zhang, Chun-Yang [1 ]
机构
[1] Shandong Normal Univ, Collaborat Innovat Ctr Functionalized Probes Chem, Coll Chem Chem Engn & Mat Sci, Key Lab Mol & Nano Probes,Minist Educ,Shandong Pr, Jinan 250014, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
C3N4/Co3O4; Self-supported; Ultrathin porous nanosheet; Hybrid structure; Oxygen evolution reaction; BIFUNCTIONAL ELECTROCATALYST; CARBON NITRIDE; EFFICIENT; CATALYSTS; VACANCIES; G-C3N4; ARRAY; ZN;
D O I
10.1016/j.electacta.2020.137537
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Oxygen evolution reaction (OER) plays important roles in energy storage and conversion technologies, but the sluggish kinetics of OER may result in a large overpotential, and thus there is urgent need for the exploration of new electrocatalysts with a low overpotential and good stability. In this research, we integrate the melamine-assisted alkaline cobalt carbonate (CoCH) nanosheets pyrolysis with high-temperature solid phase fusion to construct the 1-C3N4/Co3O4/Ni foam hybrid electrode with Co3O4 ultrathin porous nanosheets as the host, trace C3N4 as the guest, and Ni foam (NF) as the current collector. Benefiting from the unique structure, the obtained 1-C3N4/Co3O4 hybrid nanosheets can significantly reduce the charge transfer distance between the catalysts to electron collector and improve the electron transportation during the OER process. Moreover, the intimate interaction of Co3O4 with C3N4 can induce a charge redistribution at the interface. Consequently, the 1-C3N4/Co3O4NF hybrid electrode exhibits an enhanced OER performance (166 mV at 10 mA.cm(-2)) and good stability, superior to the commercial RuO2 particles and the reported transition metal-based electrocatalysts. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Synthesis of Hexagonal Co3O4 and Ag/Co3O4 Composite Nanosheets and their Electrocatalytic Performances
    Pan, Lu
    Li, Li
    Chen, Yonghong
    JOURNAL OF CLUSTER SCIENCE, 2013, 24 (04) : 1001 - 1010
  • [32] High gas-sensor and supercapacitor performance of porous Co3O4 ultrathin nanosheets
    Wang, Xiuhua
    Yao, Shangwu
    Wu, Xiaoxiu
    Shi, Zhijie
    Sun, Hongxia
    Que, Ronghui
    RSC ADVANCES, 2015, 5 (23): : 17938 - 17944
  • [33] BCNO Nanosheet Supported Co3O4 Nanoparticles as an Enhanced Electrocatalyst for Oxygen Evolution Reaction
    Ji, Xuefeng
    Li, Yingxin
    Jia, Xiaobo
    Yang, Xiaojing
    Li, Lanlan
    Yao, Yingwu
    Cheng, Yahui
    Zhang, Xinghua
    Lu, Zunming
    Liu, Hui
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (06) : H177 - H181
  • [34] Exploring the Role of CoTe/Co3O4 Composite Catalyst for Enhanced Oxygen Evolution Reaction
    Rani, Pinki
    Ahmed, Imtiaz
    Dastider, Saptarshi Ghosh
    Biswas, Rathindranath
    Mondal, Krishnakanta
    Haldar, Krishna Kanta
    Patole, Shashikant P.
    Alegaonkar, Prashant S.
    ACS APPLIED ENGINEERING MATERIALS, 2023, 1 (12): : 3389 - 3402
  • [35] Black Phosphorus-Modified Co3O4 through Tuning the Electronic Structure for Enhanced Oxygen Evolution Reaction
    Shi, Fangbing
    Huang, Keke
    Wang, Ying
    Zhang, Wei
    Li, Liping
    Wang, Xiyang
    Feng, Shouhua
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (19) : 17459 - 17466
  • [36] In/Cu Co-Doped Porous Co3O4 Nanosheets for Enhanced Xylene Detection
    Yuan, Zhenyu
    Zhang, Mingyang
    Luo, Xueman
    Meng, Fanli
    IEEE SENSORS JOURNAL, 2025, 25 (06) : 9323 - 9330
  • [37] The role of synthesis vis-a-vis the oxygen vacancies of Co3O4 in the oxygen evolution reaction
    Roy, Saraswati
    Devaraj, Nayana
    Tarafder, Kartick
    Chakraborty, Chanchal
    Roy, Sounak
    NEW JOURNAL OF CHEMISTRY, 2022, 46 (14) : 6539 - 6548
  • [38] Solution combustion synthesis of porous Co3O4 nanoparticles as oxygen evolution reaction (OER) electrocatalysts in alkaline medium
    Acedera, Rose Anne E.
    Gupta, Gaurav
    Mamlouk, Mohamed
    Balela, Mary Donnabelle L.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 836
  • [39] Plasma-Engraved Co3O4 Nanosheets with Oxygen Vacancies and High Surface Area for the Oxygen Evolution Reaction
    Xu, Lei
    Jiang, Qianqian
    Xiao, Zhaohui
    Li, Xingyue
    Huo, Jia
    Wang, Shuangyin
    Dai, Liming
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (17) : 5277 - 5281
  • [40] Hierarchical porous Fe3O4/Co3S4 nanosheets as an efficient electrocatalyst for the oxygen evolution reaction
    Du, Jing
    Zhang, Ting
    Xing, Jiale
    Xu, Cailing
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (19) : 9210 - 9216