Synthesis of ultrathin porous C3N4-modified Co3O4 nanosheets for enhanced oxygen evolution reaction

被引:14
|
作者
Wang, Huan [1 ]
Liu, Yanming [1 ]
Sun, Zhonghua [1 ]
Ren, Jianhai [1 ]
Zou, Xiaoran [1 ]
Zhang, Chun-Yang [1 ]
机构
[1] Shandong Normal Univ, Collaborat Innovat Ctr Functionalized Probes Chem, Coll Chem Chem Engn & Mat Sci, Key Lab Mol & Nano Probes,Minist Educ,Shandong Pr, Jinan 250014, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
C3N4/Co3O4; Self-supported; Ultrathin porous nanosheet; Hybrid structure; Oxygen evolution reaction; BIFUNCTIONAL ELECTROCATALYST; CARBON NITRIDE; EFFICIENT; CATALYSTS; VACANCIES; G-C3N4; ARRAY; ZN;
D O I
10.1016/j.electacta.2020.137537
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Oxygen evolution reaction (OER) plays important roles in energy storage and conversion technologies, but the sluggish kinetics of OER may result in a large overpotential, and thus there is urgent need for the exploration of new electrocatalysts with a low overpotential and good stability. In this research, we integrate the melamine-assisted alkaline cobalt carbonate (CoCH) nanosheets pyrolysis with high-temperature solid phase fusion to construct the 1-C3N4/Co3O4/Ni foam hybrid electrode with Co3O4 ultrathin porous nanosheets as the host, trace C3N4 as the guest, and Ni foam (NF) as the current collector. Benefiting from the unique structure, the obtained 1-C3N4/Co3O4 hybrid nanosheets can significantly reduce the charge transfer distance between the catalysts to electron collector and improve the electron transportation during the OER process. Moreover, the intimate interaction of Co3O4 with C3N4 can induce a charge redistribution at the interface. Consequently, the 1-C3N4/Co3O4NF hybrid electrode exhibits an enhanced OER performance (166 mV at 10 mA.cm(-2)) and good stability, superior to the commercial RuO2 particles and the reported transition metal-based electrocatalysts. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Ultrathin Co3O4 Nanomeshes for the Oxygen Evolution Reaction
    Li, Ying
    Li, Fu-Min
    Meng, Xin-Ying
    Li, Shu-Ni
    Zeng, Jing-Hui
    Chen, Yu
    ACS CATALYSIS, 2018, 8 (03): : 1913 - 1920
  • [2] Transforming Co3O4 nanosheets into porous N-doped CoxOy nanosheets with oxygen vacancies for the oxygen evolution reaction
    Xu, Lei
    Zou, Yuqin
    Xiao, Zhaohui
    Wang, Shuangyin
    JOURNAL OF ENERGY CHEMISTRY, 2019, 35 : 24 - 29
  • [3] Transforming Co3O4 nanosheets into porous N-doped CoxOy nanosheets with oxygen vacancies for the oxygen evolution reaction
    Lei Xu
    Yuqin Zou
    Zhaohui Xiao
    Shuangyin Wang
    Journal of Energy Chemistry , 2019, (08) : 24 - 29
  • [4] Surface-Modified Carbon Nanotubes with Ultrathin Co3O4 Layer for Enhanced Oxygen Evolution Reaction
    Lee, Kangpyo
    Kang, Sukhyun
    Ryu, Jeong Ho
    Jeon, Hayun
    Kim, Minju
    Kim, Young-Kwang
    Song, Taeseup
    Han, HyukSu
    Mhin, Sungwook
    Kim, Kang Min
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (50) : 58377 - 58387
  • [5] Synthesis of a Hierarchically Porous C/Co3O4 Nanostructure with Boron Doping for Oxygen Evolution Reaction
    Zou, Lianli
    Xu, Qiang
    CHEMISTRY-AN ASIAN JOURNAL, 2020, 15 (04) : 490 - 493
  • [6] Ultrathin porous Co3O4 nanoplates as highly efficient oxygen evolution catalysts
    Zhou, Xuemei
    Xia, Zhaoming
    Tian, Zhinmin
    Ma, Yuanyuan
    Qu, Yongquan
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (15) : 8107 - 8114
  • [7] Oxygen vacancy-based ultrathin Co3O4 nanosheets as a high-efficiency electrocatalyst for oxygen evolution reaction
    Zhang, Sufeng
    Wei, Ning
    Yao, Zijie
    Zhao, Xinyu
    Du, Min
    Zhou, Qiusheng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (07) : 5286 - 5295
  • [8] Exploiting synergistic effects: Co3O4/g-C3N4 composite catalyst for enhanced oxygen evolution reaction
    Fan, Liquan
    Wang, Ziteng
    Wang, Yuwei
    Ai, Honglin
    Zhang, Weichao
    Liu, Xingmei
    Han, Xianxin
    Zhao, Juan
    Zhang, Haiming
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2023, 18 (12):
  • [9] Template-free synthesis of Co3O4 microtubes for enhanced oxygen evolution reaction
    Hu, Jiani
    Zhang, Xiaofeng
    Xiao, Juan
    Li, Ruchun
    Wang, Yi
    Song, Shuqin
    CHINESE JOURNAL OF CATALYSIS, 2021, 42 (12) : 2275 - 2286
  • [10] Shape-controlled synthesis of Co3O4 for enhanced electrocatalysis of the oxygen evolution reaction
    Sidhureddy, Boopathi
    Dondapati, Jesse S.
    Chen, Aicheng
    CHEMICAL COMMUNICATIONS, 2019, 55 (25) : 3626 - 3629