Stimulated Raman histology for rapid and accurate intraoperative diagnosis of CNS tumors: prospective blinded study

被引:34
|
作者
Eichberg, Daniel G. [1 ]
Shah, Ashish H. [1 ]
Di, Long [1 ]
Semonche, Alexa M. [1 ]
Jimsheleishvili, George [1 ]
Luther, Evan M. [1 ]
Sarkiss, Christopher A. [1 ]
Levi, Allan D. [1 ]
Gultekin, Sakir H. [2 ]
Komotar, Ricardo J. [1 ,3 ]
Ivan, Michael E. [1 ,3 ]
机构
[1] Univ Miami, Miller Sch Med, Dept Neurol Surg, Miami, FL 33136 USA
[2] Univ Miami, Miller Sch Med, Dept Pathol, Miami, FL 33136 USA
[3] Sylvester Comprehens Canc Ctr, Miami, FL USA
基金
美国国家卫生研究院;
关键词
stimulated Raman histology; brain tumor; pathology; frozen section; permanent section; oncology; FROZEN-SECTION; LABEL-FREE; BRAIN; TIME; VIVO; RISK;
D O I
10.3171/2019.9.JNS192075
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
OBJECTIVE In some centers where brain tumor surgery is performed, the opportunity for expert intraoperative neuropathology consultation is lacking. Consequently, surgeons may not have access to the highest quality diagnostic histological data to inform surgical decision-making. Stimulated Raman histology (SRH) is a novel technology that allows for rapid acquisition of diagnostic histological images at the bedside. METHODS The authors performed a prospective blinded cohort study of 82 consecutive patients undergoing resection of CNS tumors to compare diagnostic time and accuracy of SRH simulation to the gold standard, i.e., frozen and permanent section diagnosis. Diagnostic accuracy was determined by concordance of SRH-simulated intraoperative pathology consultation with a blinded board-certified neuropathologist, with official frozen section and permanent section results. RESULTS Overall, the mean time to diagnosis was 30.5 +/- 13.2 minutes faster (p < 0.0001) for SRH simulation than for frozen section, with similar diagnostic correlation: 91.5% (kappa = 0.834, p < 0.0001) between SRH simulation and permanent section, and 91.5% between frozen and permanent section (kappa = 0.894, p < 0.0001). CONCLUSIONS SRH-simulated intraoperative pathology consultation was significantly faster and equally accurate as frozen section.
引用
收藏
页码:137 / 143
页数:7
相关论文
共 50 条
  • [21] Rapid beside diagnosis of breast core needle biopsies using stimulated raman histology
    Orringer, Daniel Avram
    Chen, Thomas
    Pastore, Steve
    Darvishian, Farbod
    Toth, Hildegard
    Schnabel, Freya
    CANCER RESEARCH, 2021, 81 (04)
  • [22] MULTICENTER, PROSPECTIVE VALIDATION OF AUTOMATED INTRAOPERATIVE NEUROPATHOLOGY USING STIMULATED RAMAN HISTOLOGY AND CONVOLUTIONAL NEURAL NETWORKS
    Hollon, Todd
    Pandian, Balaji
    Heth, Jason
    Sagher, Oren
    Maher, Cormac
    Sullivan, Steve
    Garton, Hugh
    Thompson, Greg
    Save, Akshay
    Marie, Tamara
    Boyett, Deborah
    Petridis, Petros
    McKhann, Guy
    Muraszko, Karin
    Bruce, Jeffrey
    Camelo-Piragua, Sandra
    Canoll, Peter
    Orringer, Daniel
    NEURO-ONCOLOGY, 2018, 20 : 183 - 183
  • [23] Stimulated Raman scattering microscopy for rapid brain tumor histology
    Yang Y.
    Chen L.
    Ji M.
    Ji, Minbiao (minbiaoj@fudan.edu.cn), 2017, World Scientific (10)
  • [24] Stimulated Raman scattering microscopy for rapid brain tumor histology
    Yang, Yifan
    Chen, Lingchao
    Ji, Minbiao
    JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES, 2017, 10 (05)
  • [25] Intraoperative microscopic autofluorescence detection and characterization in brain tumors using stimulated Raman histology and two-photon fluorescence
    Fuertjes, Gina
    Reinecke, David
    von Spreckelsen, Niklas
    Meissner, Anna-Katharina
    Ruess, Daniel
    Timmer, Marco
    Freudiger, Christian
    Ion-Margineanu, Adrian
    Khalid, Florian
    Watrinet, Konstantin
    Mawrin, Christian
    Chmyrov, Andriy
    Goldbrunner, Roland
    Bruns, Oliver
    Neuschmelting, Volker
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [26] Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy
    Daniel A. Orringer
    Balaji Pandian
    Yashar S. Niknafs
    Todd C. Hollon
    Julianne Boyle
    Spencer Lewis
    Mia Garrard
    Shawn L. Hervey-Jumper
    Hugh J. L. Garton
    Cormac O. Maher
    Jason A. Heth
    Oren Sagher
    D. Andrew Wilkinson
    Matija Snuderl
    Sriram Venneti
    Shakti H. Ramkissoon
    Kathryn A. McFadden
    Amanda Fisher-Hubbard
    Andrew P. Lieberman
    Timothy D. Johnson
    X. Sunney Xie
    Jay K. Trautman
    Christian W. Freudiger
    Sandra Camelo-Piragua
    Nature Biomedical Engineering, 1
  • [27] Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy
    Orringer, Daniel A.
    Pandian, Balaji
    Niknafs, Yashar S.
    Hollon, Todd C.
    Boyle, Julianne
    Lewis, Spencer
    Garrard, Mia
    Hervey-Jumper, Shawn L.
    Garton, Hugh J. L.
    Maher, Cormac O.
    Heth, Jason A.
    Sagher, Oren
    Wilkinson, D. Andrew
    Snuderl, Matija
    Venneti, Sriram
    Ramkissoon, Shakti H.
    McFadden, Kathryn A.
    Fisher-Hubbard, Amanda
    Lieberman, Andrew P.
    Johnson, Timothy D.
    Xie, X. Sunney
    Trautman, Jay K.
    Freudiger, Christian W.
    Camelo-Piragua, Sandra
    NATURE BIOMEDICAL ENGINEERING, 2017, 1 (02):
  • [28] RAPID INTRAOPERATIVE HISTOLOGICAL DIAGNOSIS OF BONE TUMORS
    LINDENFELSER, R
    DEUTSCHE MEDIZINISCHE WOCHENSCHRIFT, 1977, 102 (13) : 473 - 478
  • [29] OpenSRH: optimizing brain tumor surgery using intraoperative stimulated Raman histology
    Jiang, Cheng
    Chowdury, Asadur
    Hou, Xinhai
    Kondepudi, Akhil
    Freudiger, Christian W.
    Conway, Kyle
    Camelo-Piragua, Sandra
    Orringer, Daniel A.
    Lee, Honglak
    Hollon, Todd C.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [30] Rapid intraoperative diagnosis of pediatric brain tumors using Raman spectroscopy: A machine learning approach
    Jabarkheel, Rashad
    Ho, Chi-Sing
    Rodrigues, Adrian J.
    Jin, Michael C.
    Parker, Jonathon J.
    Mensah-Brown, Kobina
    Yecies, Derek
    Grant, Gerald A.
    NEURO-ONCOLOGY ADVANCES, 2022, 4 (01)