Endomorphism algebras of Kronecker modules regulated by quadratic function fields

被引:2
|
作者
Okoh, F. [1 ]
Zorzitto, F.
机构
[1] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
[2] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
关键词
purely simple Kronecker module; regulating polynomial; Laurent expansions; endomorphism algebra;
D O I
10.4153/CJM-2007-008-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Purely simple Kronecker modules M, built from an algebraically closed field K, arise from a triplet (m, h, alpha) where m is a positive integer, h: K boolean OR {infinity} -> {infinity, 0, 1, 2, 3,... }is a height function, and alpha is a K-linear functional on the. space K(X) of rational functions in one variable X. Every pair (h, a) comes with a polynomial f in K(X) [Y] called the regulator. When the module M admits non-trivial endomorphisms, f must be linear or quadratic in Y. in that case M is purely simple if and only if f is an irreducible quadratic. Then the K-algebra End M embeds in the quadratic function field K(X)[Y]/(f). For some height functions h of infinite support I, the search for a functional a for which (h, alpha) has regulator 0 comes down to having functions eta: I -> K such that no planar curve intersects the graph of eta on a cofinite subset. If K has characteristic not 2, and the triplet (m, h, alpha) gives a purely-simple Kronecker module M having non-trivial endomorphisms, then h attains the value infinity at least once on K boolean OR {infinity} and h is finite-valued at least twice on K boolean OR {infinity}. Conversely all these h form part of such triplets. The proof of this result hinges on the fact that a rational function r is a perfect square in K(X) if and only if r is a perfect square in the completions of K(X) with respect to all of its valuations.
引用
收藏
页码:186 / 210
页数:25
相关论文
共 50 条
  • [21] Global dimensions for endomorphism algebras of tilting modules
    Gastaminza, S
    Happel, D
    Platzeck, MI
    Redondo, MJ
    Unger, L
    ARCHIV DER MATHEMATIK, 2000, 75 (04) : 247 - 255
  • [22] ENDOMORPHISM ALGEBRAS OF TORSION MODULES-II
    DUGAS, M
    GOBEL, R
    LECTURE NOTES IN MATHEMATICS, 1983, 1006 : 400 - 411
  • [23] QUADRATIC MODULES AND AZUMAYA ALGEBRAS
    KNUS, MA
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1979, MEM (59): : 95 - 100
  • [24] QUADRATIC MODULES FOR LIE ALGEBRAS
    Ulualan, Erdal
    Uslu, Enver Onder
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2011, 40 (03): : 409 - 419
  • [25] Endomorphism algebras of tilting modules over m-replicated algebras
    Pei, Genhua
    Yin, Hongbo
    Zhang, Shunhua
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 448 : 292 - 298
  • [26] ENDOMORPHISM RINGS OF MODULES OVER PI-ALGEBRAS
    PROCESI, C
    SMALL, L
    MATHEMATISCHE ZEITSCHRIFT, 1968, 106 (03) : 178 - &
  • [27] Prescribing endomorphism algebras of ℵn-free modules
    Goebel, Ruediger
    Herden, Daniel
    Shelah, Saharon
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (09) : 1775 - 1816
  • [28] KRONECKER LIMIT FORMULA OF REAL QUADRATIC FIELDS (Ⅰ)
    陆洪文
    Science China Mathematics, 1984, (12) : 1233 - 1250
  • [29] On Kronecker limit formulas for real quadratic fields
    Yamamoto, Shuji
    JOURNAL OF NUMBER THEORY, 2008, 128 (02) : 426 - 450
  • [30] ON KRONECKER LIMIT FORMULA FOR REAL QUADRATIC FIELDS (Ⅱ)
    陆洪文
    张明尧
    ScienceinChina,SerA., 1989, Ser.A.1989 (12) : 1409 - 1422