Strain-Engineered Biaxial Tensile Epitaxial Germanium for High-Performance Ge/InGaAs Tunnel Field-Effect Transistors

被引:32
|
作者
Clavel, Michael [1 ]
Goley, Patrick [1 ]
Jain, Nikhil [1 ]
Zhu, Yan [1 ]
Hudait, Mantu K. [1 ]
机构
[1] Virginia Tech, Bradley Dept Elect & Comp Engn, Blacksburg, VA 24061 USA
来源
基金
美国国家科学基金会;
关键词
Tunnel field-effect transistors (TFETs); tensile-strained Ge; strain-engineered Ge/InGaAs heterostructures; band alignment; SURFACE-MORPHOLOGY; BAND-EDGE; GE; GAAS; HETEROJUNCTIONS; INGAAS; GROWTH; SI;
D O I
10.1109/JEDS.2015.2394743
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The structural, morphological, and energy band alignment properties of biaxial tensile-strained germanium epilayers, grown in-situ on GaAs via a linearly graded InxGa1-xAs buffer architecture and utilizing dual chamber molecular beam epitaxy, were investigated. Precise control over the growth conditions yielded a tunable in-plane biaxial tensile strain within the Ge thin films that was modulated by the underlying InxGa1-xAs "virtual substrate" composition. In-plane tensile strains up to 1.94% were achieved without Ge relaxation for layer thicknesses of 15 to 30 nm. High-resolution x-ray diffraction supported the pseudomorphic nature of the Ge/InxGa1-xAs interface, indicating a quasi-ideal stress transfer to the Ge lattice. High-resolution transmission electron microscopy revealed defect-free Ge epitaxy and a sharp, coherent interface at the Ge/InxGa1-xAs heterojunction. Surface morphology characterization using atomic force microscopy exhibited symmetric, 2-D cross-hatch patterns with root mean square roughness less than 4.5 nm. X-ray photoelectron spectroscopic analysis revealed a positive, monotonic trend in band offsets for increasing tensile strain. The superior structural and band alignment properties of strain-engineered epitaxial Ge suggest that tensile-strained Ge/InxGa1-xAs heterostructures show great potential for future high-performance tunnel field-effect transistor architectures requiring flexible device design criteria while maintaining low power, energy-efficient device operation.
引用
收藏
页码:190 / 199
页数:10
相关论文
共 50 条
  • [21] New Fused Heteroarenes for High-Performance Field-Effect Transistors
    Wang, Jie-Yu
    Zhou, Yan
    Yan, Jing
    Ding, Lin
    Ma, Yuguo
    Cao, Yong
    Wang, Jian
    Pei, Jian
    CHEMISTRY OF MATERIALS, 2009, 21 (13) : 2595 - 2597
  • [22] Interface engineering for high-performance organic field-effect transistors
    Dong, Huanli
    Jiang, Lang
    Hu, Wenping
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (41) : 14165 - 14180
  • [23] High-Performance Field-Effect Transistors Based on αP and βP
    Montes, Enrique
    Schwingenschlogl, Udo
    ADVANCED MATERIALS, 2019, 31 (18)
  • [24] High-Performance BeMgZnO/ZnO Heterostructure Field-Effect Transistors
    Ding, Kai
    Avrutin, Vitaliy
    Izyumskaya, Natalia
    Ozgur, Umit
    Morkoc, Hadis
    Sermuksnis, Emilis
    Matulionis, Arvydas
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2020, 14 (12):
  • [25] Hump Effects of Germanium/Silicon Heterojunction Tunnel Field-Effect Transistors
    Kim, Sang Wan
    Choi, Woo Young
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2016, 63 (06) : 2583 - 2588
  • [26] Germanium N and P Multifin Field-Effect Transistors With High-Performance Germanium (Ge) p+/n and n+/p Heterojunctions Formed on Si Substrate
    Chen, Che-Wei
    Chung, Cheng-Ting
    Tzeng, Ju-Yuan
    Li, Pin-Hui
    Chang, Pang-Sheng
    Chien, Chao-Hsin
    Luo, Guang-Li
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2013, 60 (04) : 1334 - 1341
  • [27] Performance Analysis of Germanium-Silicon Vertical Tunnel Field-Effect Transistors (Ge-Si-VTFETs) for Analog/RF Applications
    Ramkumar, K.
    Ramakrishnan, V. N.
    SILICON, 2022, 14 (16) : 10603 - 10612
  • [28] Performance Analysis of Germanium-Silicon Vertical Tunnel Field-Effect Transistors (Ge-Si-VTFETs) for Analog/RF Applications
    K. Ramkumar
    V. N. Ramakrishnan
    Silicon, 2022, 14 : 10603 - 10612
  • [29] Investigation of the performance of strain-engineered silicon nanowire field effect transistors (ε-Si-NWFET) on IOS substrates
    Chatterjee, Sulagna
    Sikdar, Subhrajit
    Chowdhury, Basudev Nag
    Chattopadhyay, Sanatan
    JOURNAL OF APPLIED PHYSICS, 2019, 125 (08)
  • [30] Tensile strained Ge tunnel field-effect transistors: k . p material modeling and numerical device simulation
    Kao, Kuo-Hsing
    Verhulst, Anne S.
    Van de Put, Maarten
    Vandenberghe, William G.
    Soree, Bart
    Magnus, Wim
    De Meyer, Kristin
    JOURNAL OF APPLIED PHYSICS, 2014, 115 (04)