Insights into tRNA-Dependent Amidotransferase Evolution and Catalysis from the Structure of the Aquifex aeolicus Enzyme

被引:29
|
作者
Wu, Jing [1 ]
Bu, Weishu [1 ]
Sheppard, Kelly [2 ]
Kitabatake, Makoto [3 ]
Kwon, Suk-Tae [2 ]
Soell, Dieter [2 ,4 ]
Smith, Janet L. [1 ]
机构
[1] Univ Michigan, Inst Life Sci, Dept Biol Chem, Ann Arbor, MI 48109 USA
[2] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT 06520 USA
[3] Kyoto Univ, Inst Virus Res, Dept Genet & Mol Biol, Kyoto 6068507, Japan
[4] Yale Univ, Dept Chem, New Haven, CT 06520 USA
基金
美国国家卫生研究院;
关键词
tRNA-dependent amidotransferase; GatCAB; crystal structure; amidase superfamily; amidotransferase evolution; GLUTAMINYL-TRANSFER-RNA; AMINO-ACID; GLU-TRNA(GLN) AMIDOTRANSFERASE; SYNTHETASE; GATCAB; MECHANISM; PROTEINS; ASP-TRNA(ASN); RECRUITMENT; TRIAD;
D O I
10.1016/j.jmb.2009.06.014
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Many bacteria form Gln-tRNA(Gln) and Asn-tRNA(Asn) by conversion of the misacylated Glu-tRNA(Gln) and Asp-tRNA(Asn) species catalyzed by the GatCAB amidotransferase in the presence of ATP and an amide donor (glutamine or asparagine). Here, we report the crystal structures of GatCAB from the hyperthermophilic bacterium Aquifex aeolicus, complexed with glutamine, asparagine, aspartate, ADP, or ATP. In contrast to the Staphylococcus aureus GatCAB, the A. aeolicus enzyme formed acyl-enzyme intermediates with either glutamine or asparagine, in line with the equally facile use by the amidotransferase of these amino acids as amide donors in the transamidation reaction. A water-filled ammonia channel is open throughout the length of the A. aeolicus GatCAB from the GatA active site to the synthetase catalytic pocket in the B-subunit. A non-catalytic Zn2+ site in the A. aeolicus GatB stabilizes subunit contacts and the ammonia channel. Judged from sequence conservation in the known GatCAB sequences, the Zn2+ binding motif was likely present in the primordial GatB/E, but became lost in certain lineages (e.g., S. aureus GatB). Two divalent metal binding sites, one permanent and the other transient, are present in the catalytic pocket of the A. aeolicus GatB. The two sites enable GatCAB to first phosphorylate the misacylated tRNA substrate and then amidate the activated intermediate to form the cognate products, Gln-tRNA(Gln) or Asn-tRNA(Asn) (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:703 / 716
页数:14
相关论文
共 50 条
  • [31] A tRNA-dependent cysteine biosynthesis enzyme recognizes the selenocysteine-specific tRNA in Escherichia coli
    Yuan, Jing
    Hohn, Michael J.
    Sherrer, R. Lynn
    Palioura, Sotiria
    Su, Dan
    Soell, Dieter
    FEBS LETTERS, 2010, 584 (13) : 2857 - 2861
  • [32] Characterization of DhpH-C, a tRNA-dependent enzyme in dehydrophos biosynthesis
    Ulrich, Emily
    Bougioukou, Despina
    van der Donk, Wilfred
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [33] Structure of a soluble subcomplex of NADH:ubiquinone oxidoreductase from Aquifex aeolicus
    Labatzke, Ramona
    Kohlstaedt, Markus
    Jakob, Leonhard
    Friedrich, Thorsten
    Einsle, Oliver
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2010, 1797 : 18 - 18
  • [34] The substrate specificity of tRNA (m1G37) methyltransferase (TrmD) from Aquifex aeolicus
    Takeda, Hiroshi
    Toyooka, Takashi
    Ikeuchi, Yoshiho
    Yokobori, Shin-ichi
    Okadome, Kan
    Takano, Fuyumi
    Oshima, Tairo
    Suzuki, Tsutomu
    Endo, Yaeta
    Hori, Hiroyuki
    GENES TO CELLS, 2006, 11 (12) : 1353 - 1365
  • [35] Structure of the hypothetical protein AQ_1354 from Aquifex aeolicus
    Oganesyan, V
    Busso, D
    Brandsen, J
    Chen, SF
    Jancarik, J
    Kim, R
    Kim, SH
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2003, 59 : 1219 - 1223
  • [36] Dual targeted tRNA-dependent amidotransferase ensures both mitochondrial and chloroplastic Gln-tRNAGln synthesis in plants
    Pujol, C.
    Bailly, M.
    Kern, D.
    Marechal-Drouard, L.
    Becker, H.
    Duchene, A. -M.
    FEBS JOURNAL, 2008, 275 : 462 - 462
  • [37] Structure and characterization of RNase H3 from Aquifex aeolicus
    Jongruja, Nujarin
    You, Dong-Ju
    Angkawidjaja, Clement
    Kanaya, Eiko
    Koga, Yuichi
    Kanaya, Shigenori
    FEBS JOURNAL, 2012, 279 (15) : 2737 - 2753
  • [38] Crystal structure and in silico studies of dihydrodipicolinate synthase (DHDPS) from Aquifex aeolicus
    Sridharan, Upasana
    Ebihara, Akio
    Kuramitsu, Seiki
    Yokoyama, Shigeyuki
    Kumarevel, Thirumananseri
    Ponnuraj, Karthe
    EXTREMOPHILES, 2014, 18 (06) : 973 - 985
  • [39] Crystal structure of tRNA (m1G37) methyltransferase from Aquifex aeolicus at 2.6 Å resolution:: A novel methyltransferase fold
    Liu, JY
    Wang, WR
    Shin, DH
    Yokota, H
    Kim, R
    Kim, SH
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2003, 53 (02) : 326 - 328
  • [40] Structure of an N-terminally truncated selenophosphate synthetase from Aquifex aeolicus
    Matsumoto, Eiko
    Sekine, Shun-ichi
    Akasaka, Ryogo
    Otta, Yumi
    Katsura, Kazushige
    Inoue, Mio
    Kaminishi, Tatsuya
    Terada, Takaho
    Shirouzu, Mikako
    Yokoyama, Shigeyuki
    ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS, 2008, 64 : 453 - 458