Microstructure and tribological behavior of a peak aged Cu-Cr-Zr alloy

被引:80
|
作者
Qi, WX
Tu, JP [1 ]
Liu, F
Yang, YZ
Wang, NY
Lu, HM
Zhang, XB
Guo, SY
Liu, MS
机构
[1] Zhejiang Univ, Dept Mat Sci & Engn, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China
[3] Zhejiang Inst Technol, Dept Mech Engn, Hangzhou 310033, Peoples R China
关键词
Cu-Cr-Zr alloy; aging treatment; microstructure; friction and wear;
D O I
10.1016/S0921-5093(02)00387-8
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The friction and wear behavior of peak aged Cu-Cr-Zr alloys dry sliding against a brass counterface were investigated on a pin-on-disk wear tester. The microstructure of the aged Cu-Cr-Zr alloy before and after wear tests was analyzed by transmission electron microscopy. The worn surfaces of the Cu-Cr-Zr alloys were studied by scanning electron microscopy and energy dispersive X-ray spectroscopy. The results indicated that an appropriate aging treatment resulted in the formation of fine, dispersive and coherent precipitates in the Cu matrix and thus could improve the hardness and wear resistance of the Cu-Cr-Zr alloy. The wear rate of the aged Cu-Cr-Zr alloy increased monotonically with increase of the normal load. With increasing sliding speed, the wear rate of the peak aged Cu-Cr-Zr alloy decreased initially and then began to increase. After reaching the maximum wear rate at a speed of 0.445 in s(-1), the wear rate decreased again with further increasing in the sliding speed. Adhesive wear and abrasive wear were the dominant wear mechanisms under unlubricated conditions. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:89 / 96
页数:8
相关论文
共 50 条
  • [41] Microstructure and Bending Properties of Cu-Cr-Zr Alloy Subjected to Heat Treatment and Rolling
    Li, Jiazhi
    Ding, Hua
    Gao, Weilin
    Wang, Li
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2021, 30 (08) : 5825 - 5833
  • [42] Microstructure evolution in a Cu-Cr-Zr alloy during warm intense plastic straining
    Mishnev, R.
    Shakhova, I.
    Belyakov, A.
    Kaibyshev, R.
    6TH INTERNATIONAL CONFERENCE ON NANOMATERIALS BY SEVERE PLASTIC DEFORMATION (NANOSPD6), 2014, 63
  • [43] Study on electroslag remelting of Cu-Cr-Zr alloy
    Wei, JH
    Shen, XY
    METALL, 2000, 54 (04): : 196 - 200
  • [44] On the microstructure and texture of Cu-Cr-Zr alloy after severe plastic deformation by ECAP
    Abib, Khadidja
    Munoz Balanos, Jairo Alberto
    Alili, Baya
    Bradai, Djamel
    MATERIALS CHARACTERIZATION, 2016, 112 : 252 - 258
  • [45] Study on electroslag remelting of Cu-Cr-Zr alloy
    Wei, JH
    Shen, XY
    EPD CONGRESS 2000,PROCEEDINGS, 2000, : 203 - 213
  • [46] Contribution of Zr to strength and grain refinement in Cu-Cr-Zr alloy
    Chen, Jinshui
    Wang, Junfeng
    Xiao, Xiangpeng
    Wang, Hang
    Chen, Huiming
    Yang, Bin
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 756 : 464 - 473
  • [47] Low cycle fatigue behavior of Cu-Cr-Zr alloy with different cold deformation
    Chen, Jinshui
    Xiao, Xiangpeng
    Xiong, Shujun
    Wang, Junfeng
    Huang, Hao
    Yang, Bin
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2023, 46 (01) : 3 - 16
  • [48] Effects of multi-step thermomechanical treatments on microstructure and properties of Cu-Cr-Zr alloy
    Zhou, Hai-Tao
    Zhong, Jian-Wei
    Zhou, Xiao
    Zhao, Zhong-Kai
    Li, Qing-Bo
    Cailiao Rechuli Xuebao/Transactions of Materials and Heat Treatment, 2009, 30 (03): : 141 - 145
  • [49] The Influence of Severe Plastic Deformation and Subsequent Annealing on the Microstructure and Hardness of a Cu-Cr-Zr Alloy
    Kapoor, Garima
    Kvackaj, Tibor
    Heczel, Anita
    Bidulska, Jana
    Kocisko, Robert
    Fogarassy, Zsolt
    Simcak, Dusan
    Gubicza, Jeno
    MATERIALS, 2020, 13 (10)
  • [50] Correlation between microstructure and mechanical properties in the age-hardenable Cu-Cr-Zr alloy
    Jha, Kaushal
    Neogy, Suman
    Kumar, Santosh
    Singh, R. N.
    Dey, G. K.
    JOURNAL OF NUCLEAR MATERIALS, 2021, 546