Amorphous and crystalline TiO2 nanoparticle negative electrodes for sodium-ion batteries

被引:28
|
作者
Deng, Changjian [1 ]
Ma, Chunrong [1 ]
Lau, Miu Lun [1 ]
Skinner, Paige [1 ]
Liu, Yuzi [2 ]
Xu, Wenclian [3 ]
Zhou, Hua [3 ]
Ren, Yang [3 ]
Yin, Yadong [4 ]
Williford, Bethany [1 ]
Dahl, Michael [1 ,4 ]
Xiong, Hui [1 ]
机构
[1] Boise State Univ, Micron Sch Mat Sci & Engn, Boise, ID 83725 USA
[2] Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA
[3] Argonne Natl Lab, Xray Sci Div, Lemont, IL 60439 USA
[4] Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA
基金
美国国家科学基金会;
关键词
TiO2; Amorphous; Crystalline; Nanoparticles; Sodium ion batteries; ANATASE TIO2; ENERGY-STORAGE; ANODE MATERIAL; RUTILE; PARAMETERS; MORPHOLOGY; INSERTION; NANORODS; SIZE;
D O I
10.1016/j.electacta.2019.134723
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Titanium dioxide (TiO2) is a promising negative electrode for sodium ion batteries (SIBS). Although TiO2 materials with amorphous (A-TiO2) and single-phase crystalline structures (C-TiO2) have been separately explored, the study to compare the fundamental electrochemistry of A-TiO2 and C-TiO2 is limited. In this work, we investigated A-TiO2 and C-TiO2 nanoparticles with identical chemical composition and morphology. C-TiO2 exhibits enhanced electrochemical performance than A-TiO2 in terms of rate capability and cycle life. Cyclic voltammetry (CV) analysis suggests reversible Na ion insertion/extraction in C-TiO2. However, such process is irreversible in the case of A-TiO2. The charge storage mechanisms in both samples were studied to show that diffusion-controlled intercalation process becomes significant in C-TiO2 sample. The C-TiO2 sample has a better Na+ diffusivity measured through the galvanostatic intermittent titration technique (GITT) compared to A-TiO2, which corroborates well with the rate capability study. Furthermore, the evolution of local structure of the TiO2 samples was analyzed by ex situ pair distribution function (PDF) to understand the variation in electrochemical properties. It reveals that the corner-shared Ti-Ti distance along Na ion diffusion pathway increases with the increase of crystallinity, leading to the expanded diffusion channels and therefore more active sites and faster diffusion. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Optimization of nonatitanate electrodes for sodium-ion batteries
    Alvarado, Judith
    Barim, Gozde
    Quilty, Calvin D.
    Yi, Eongyu
    Takeuchi, Kenneth J.
    Takeuchi, Esther S.
    Marschilok, Amy C.
    Doeff, Marca M.
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (38) : 19917 - 19926
  • [22] Rational selection of amorphous or crystalline V2O5 cathode for sodium-ion batteries
    Liu, Shikun
    Tong, Zhongqiu
    Zhao, Jiupeng
    Liu, Xusong
    Wang, Jing
    Ma, Xiaoxuan
    Chi, Caixia
    Yang, Yu
    Liu, Xiaoxu
    Li, Yao
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (36) : 25645 - 25654
  • [23] Pseudocapacitive sodium-ion storage in one-dimensionally structured anatase TiO2 nanofiber anode for high performance sodium-ion batteries
    Eroglu, Omer
    Kizil, Huseyin
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2023, 178
  • [24] TiO2 nanorods grown on carbon fiber cloth as binder-free electrode for sodium-ion batteries and flexible sodium-ion capacitors
    Liu, Sainan
    Luo, Zhigao
    Tian, Gengyu
    Zhu, Mengnan
    Cai, Zhenyang
    Pan, Anqiang
    Liang, Shuquan
    JOURNAL OF POWER SOURCES, 2017, 363 : 284 - 290
  • [25] Deepening into the charge storage mechanisms and electrochemical performance of TiO2 hollandite for sodium-ion batteries
    Duarte-Cárdenas A.
    Díaz-Carrasco P.
    Kuhn A.
    Basa A.
    García-Alvarado F.
    Electrochimica Acta, 2022, 427
  • [26] High cyclability of carbon-coated TiO2 nanoparticles as anode for sodium-ion batteries
    Ge, Yeqian
    Jiang, Han
    Zhu, Jiadeng
    Lu, Yao
    Chen, Chen
    Hu, Yi
    Qiu, Yiping
    Zhang, Xiangwu
    ELECTROCHIMICA ACTA, 2015, 157 : 142 - 148
  • [27] The effect of the iron doping on anatase TiO2 anode for electrochemical performance of sodium-ion batteries
    Eroglu, Omer
    Kizil, Huseyin
    SOLID STATE IONICS, 2023, 393
  • [28] Engineering Solid Electrolyte Interphase for Pseudocapacitive Anatase TiO2 Anodes in Sodium-Ion Batteries
    Xu, Zheng-Long
    Lim, Kyungmi
    Park, Kyu-Young
    Yoon, Gabin
    Seong, Won Mo
    Kang, Kisuk
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (29)
  • [29] Sn nanocrystals embedded in porous TiO2/C with improved capacity for sodium-ion batteries
    Xu, Wei
    Kong, Lingjun
    Huang, Hui
    Zhong, Ming
    Liu, Yingying
    Bu, Xian-He
    INORGANIC CHEMISTRY FRONTIERS, 2019, 6 (10) : 2675 - 2681
  • [30] Nickel modified TiO2/C nanodisks with defective and near-amorphous structure for high-performance sodium-ion batteries
    Zhang, Daijie
    Xu, Hui
    BATTERY ENERGY, 2024, 3 (01):