Amorphous and crystalline TiO2 nanoparticle negative electrodes for sodium-ion batteries

被引:28
|
作者
Deng, Changjian [1 ]
Ma, Chunrong [1 ]
Lau, Miu Lun [1 ]
Skinner, Paige [1 ]
Liu, Yuzi [2 ]
Xu, Wenclian [3 ]
Zhou, Hua [3 ]
Ren, Yang [3 ]
Yin, Yadong [4 ]
Williford, Bethany [1 ]
Dahl, Michael [1 ,4 ]
Xiong, Hui [1 ]
机构
[1] Boise State Univ, Micron Sch Mat Sci & Engn, Boise, ID 83725 USA
[2] Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA
[3] Argonne Natl Lab, Xray Sci Div, Lemont, IL 60439 USA
[4] Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA
基金
美国国家科学基金会;
关键词
TiO2; Amorphous; Crystalline; Nanoparticles; Sodium ion batteries; ANATASE TIO2; ENERGY-STORAGE; ANODE MATERIAL; RUTILE; PARAMETERS; MORPHOLOGY; INSERTION; NANORODS; SIZE;
D O I
10.1016/j.electacta.2019.134723
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Titanium dioxide (TiO2) is a promising negative electrode for sodium ion batteries (SIBS). Although TiO2 materials with amorphous (A-TiO2) and single-phase crystalline structures (C-TiO2) have been separately explored, the study to compare the fundamental electrochemistry of A-TiO2 and C-TiO2 is limited. In this work, we investigated A-TiO2 and C-TiO2 nanoparticles with identical chemical composition and morphology. C-TiO2 exhibits enhanced electrochemical performance than A-TiO2 in terms of rate capability and cycle life. Cyclic voltammetry (CV) analysis suggests reversible Na ion insertion/extraction in C-TiO2. However, such process is irreversible in the case of A-TiO2. The charge storage mechanisms in both samples were studied to show that diffusion-controlled intercalation process becomes significant in C-TiO2 sample. The C-TiO2 sample has a better Na+ diffusivity measured through the galvanostatic intermittent titration technique (GITT) compared to A-TiO2, which corroborates well with the rate capability study. Furthermore, the evolution of local structure of the TiO2 samples was analyzed by ex situ pair distribution function (PDF) to understand the variation in electrochemical properties. It reveals that the corner-shared Ti-Ti distance along Na ion diffusion pathway increases with the increase of crystallinity, leading to the expanded diffusion channels and therefore more active sites and faster diffusion. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Advances of TiO2 as Negative Electrode Materials for Sodium-Ion Batteries
    Wang, Weigang
    Liu, Yu
    Wu, Xu
    Wang, Jing
    Fu, Lijun
    Zhu, Yusong
    Wu, Yuping
    Liu, Xiang
    ADVANCED MATERIALS TECHNOLOGIES, 2018, 3 (09):
  • [2] Solid Electrolyte Interphase Formation on Anatase TiO2 Nanoparticle-Based Electrodes for Sodium-Ion Batteries
    Siebert, Andreas
    Dou, Xinwei
    Garcia-Diez, Raul
    Buchholz, Daniel
    Felix, Roberto
    Handick, Evelyn
    Wilks, Regan G.
    Passerini, Stefano
    Bar, Marcus
    ACS APPLIED ENERGY MATERIALS, 2023, 7 (01) : 125 - 132
  • [3] Nano Crystalline TiO2 Thin Films as Negative Electrodes for Lithium Ion Batteries
    Aslan, Serdar
    Guler, Mehmet Oguz
    Cevher, Ozgur
    Akbulut, Hatem
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2012, 12 (12) : 9248 - 9253
  • [4] Monitoring the Sodiation Mechanism of Anatase TiO2 Nanoparticle-Based Electrodes for Sodium-Ion Batteries by Operando XANES Measurements
    Siebert, Andreas
    Dou, Xinwei
    Garcia-Diez, Raul
    Buchholz, Daniel
    Felix, Roberto
    Handick, Evelyn
    Greco, Giorgia
    Hasa, Ivana
    Wilks, Regan G.
    Passerini, Stefano
    Baer, Marcus
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (01) : 164 - 175
  • [5] 3D Printed TiO2 Negative Electrodes for Sodium-Ion and Lithium-Ion Batteries Using Vat Photopolymerization
    Maurel, Alexis
    Martinez, Ana C.
    Chavari, Sina Bakhtar
    Yelamanchi, Bharat
    Seol, Myeong-Lok
    Dornbusch, Donald A.
    Huddleston, William H.
    Sreenivasan, Sreeprasad T.
    Sherrard, Cameroun G.
    Macdonald, Eric
    Cortes, Pedro
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (10)
  • [6] Hollandite-type TiO2: a new negative electrode material for sodium-ion batteries
    Perez-Flores, J. C.
    Baehtz, C.
    Kuhn, A.
    Garcia-Alvarado, F.
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (06) : 1825 - 1833
  • [7] Sustainable pyrolytic carbon negative electrodes for sodium-ion batteries
    Wu, Zinan
    Li, Xiaoxin
    Xie, Furong
    Chen, Rong
    Deng, Chao
    Weng, Guo-Ming
    JOURNAL OF POWER SOURCES, 2024, 621
  • [8] Nanocrystalline TiO2(B) as Anode Material for Sodium-Ion Batteries
    Wu, Liming
    Bresser, Dominic
    Buchholz, Daniel
    Passerini, Stefano
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (02) : A3052 - A3058
  • [9] Amorphous TiO2 Nanotube Anode for Rechargeable Sodium Ion Batteries
    Xiong, Hui
    Slater, Michael D.
    Balasubramanian, Mahalingam
    Johnson, Christopher S.
    Rajh, Tijana
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (20): : 2560 - 2565
  • [10] Better than crystalline: amorphous vanadium oxide for sodium-ion batteries
    Uchaker, E.
    Zheng, Y. Z.
    Li, S.
    Candelaria, S. L.
    Hu, S.
    Cao, G. Z.
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (43) : 18208 - 18214