Experimental measurements of the RF sheath thickness with a cylindrical Langmuir probe

被引:10
|
作者
Faudot, E. [1 ]
Ledig, J. [1 ]
Moritz, J. [1 ]
Heuraux, S. [1 ]
Lemoine, N. [1 ]
Devaux, S. [1 ,2 ]
机构
[1] Inst Jean Lamour, Campus Artem,2 Allee Andre Guinier, F-54011 Nancy, France
[2] CRYOSCAN, Campus Artem,2 Allee Andre Guinier, F-54011 Nancy, France
关键词
COLLISIONLESS; MODEL; DISCHARGE; DYNAMICS; PLASMAS;
D O I
10.1063/1.5096018
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The small layer oscillating in front of a radio frequency (rf) biased electrode in an asymmetric rf plasma discharge without a magnetic field is diagnosed using an rf compensated cylindrical probe. Thanks to this probe (0.15mm in diameter), the floating potential is measured in this area. Radio frequency plasmas and sheath properties are then derived from the I-V characteristics measured by the probe at different rf power levels in both capacitive and direct couplings. In direct coupling, the plasma biasing is, as expected, nearly equal to the applied rf potential except at high power levels for which the current collected by the electrode saturates and the sheath potential gap is reversed. In capacitive coupling, the self-biasing of the electrode is strongly negative due to the matching box used. From the difference between the plasma potential and the floating potential, we found a sheath thickness of about 3 lambda(De). Within the rf power scan performed, the sheath thicknesses deduced from the potential and density profiles are 3 times higher than those from the Child-Langmuir law both in direct and capacitive coupling in a low collisional helium plasma.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Langmuir Probe Measurements in a Dual-Frequency Capacitively Coupled rf Discharge
    Schleitzer, Jessica
    Schneider, Viktor
    Korolov, I.
    Huebner, G.
    Hartmann, P.
    Schulze, J.
    Kersten, Holger
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2024, 52 (04) : 1346 - 1357
  • [22] VALIDATING CYLINDRICAL LANGMUIR PROBE TECHNIQUES
    ROGERS, JH
    DEGROOT, JS
    HWANG, DQ
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1992, 63 (01): : 31 - 36
  • [23] Ion orbits in a cylindrical Langmuir probe
    Taccogna, F
    Longo, S
    Capitelli, M
    PHYSICS OF PLASMAS, 2006, 13 (04)
  • [24] Langmuir probe without RF compensation
    Dvorak, P.
    Palenik, J.
    Tkacik, M.
    Pospisil, Z.
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2022, 31 (08):
  • [25] Plasma density determination from ion current to cylindrical Langmuir probe with validation on hairpin probe measurements
    Voloshin, D.
    Rakhimova, T.
    Kropotkin, A.
    Amirov, I
    Izyumov, M.
    Lopaev, D.
    Zotovich, A.
    Ziryanov, S.
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2023, 32 (04):
  • [26] Experimental evaluation of Langmuir probe sheath potential coefficient on the HL-2A tokamak
    Nie, L.
    Xu, M.
    Ke, R.
    Yuan, B. D.
    Wu, Y. F.
    Cheng, J.
    Lan, T.
    Yu, Y.
    Hong, R. J.
    Guo, D.
    Ting, L.
    Dong, Y. B.
    Zhang, Y. P.
    Song, X. M.
    Zhong, W. L.
    Wang, Z. H.
    Sun, A. P.
    Xu, J. Q.
    Chen, W.
    Yan, L. W.
    Zou, X. L.
    Duan, X. R.
    NUCLEAR FUSION, 2018, 58 (03)
  • [27] LANGMUIR PROBE MEASUREMENTS IN THE IONOSPHERE
    BOGGESS, RL
    BRACE, LH
    SPENCER, NW
    JOURNAL OF GEOPHYSICAL RESEARCH, 1959, 64 (10): : 1627 - 1630
  • [28] Langmuir Probe Measurements in a Cylindrical Magnetron Discharge in the Presence of Ar/O2
    Yasserian, Kiomars
    Ghoranneviss, Mahmood
    Aslaninejad, Morteza
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2009, 48 (03) : 036001
  • [29] Accuracy of Langmuir probe ion density measurements in low-frequency RF discharges
    Los Alamos Natl Lab, Los Alamos, United States
    Plasma Sources Sci Technol, 4 (640-647):
  • [30] The accuracy of Langmuir probe ion density measurements in low-frequency RF discharges
    Tuszewski, M
    Tobin, JA
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 1996, 5 (04): : 640 - 647