Differential formulation of the gyrokinetic Landau operator

被引:6
|
作者
Hirvijoki, Eero [1 ]
Brizard, Alain J. [2 ]
Pfefferie, David [1 ]
机构
[1] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
[2] St Michaels Coll, Dept Phys, Colchester, VT 05439 USA
关键词
fusion plasma; plasma nonlinear phenomena; plasma simulation; COLLISION OPERATOR; SIMULATION; EQUATION;
D O I
10.1017/S0022377816001203
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Subsequent to the recent rigorous derivation of an energetically consistent gyrokinetic collision operator in the so-called Landau representation, this paper investigates the possibility of finding a differential formulation of the gyrokinetic Landau collision operator. It is observed that, while a differential formulation is possible in the gyrokinetic phase space, reduction of the resulting system of partial differential equations to five dimensions via gyroaveraging poses a challenge. Based on the present work, it is likely that the gyrocentre analogues of the Rosenbluth-MacDonaldJudd potential functions must be kept gyroangle dependent.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] GYROKINETIC ENERGY-CONSERVATION AND POISSON-BRACKET FORMULATION
    BRIZARD, A
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1989, 1 (07): : 1381 - 1384
  • [22] Electromagnetic formulation of global gyrokinetic particle simulation in toroidal geometry
    Holod, I.
    Zhang, W. L.
    Xiao, Y.
    Lin, Z.
    PHYSICS OF PLASMAS, 2009, 16 (12)
  • [23] FORMULATION OF ELECTRIC-FIELD INTEGRAL-EQUATION WITHOUT USE OF DIFFERENTIAL OPERATOR
    ONEILL, CJ
    DOWNS, T
    KHAN, PJ
    ELECTRONICS LETTERS, 1981, 17 (17) : 598 - 600
  • [24] Variational formulation for nonlinear impulsive fractional differential equations with (p, q)-Laplacian operator
    Li, Dongping
    Chen, Fangqi
    Wu, Yonghong
    An, Yukun
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (01) : 515 - 531
  • [25] Spectral properties of Landau operator with δ cylinder interaction
    Hounkonnou, MN
    Honnouvo, G
    GROUP 24 : PHYSICAL AND MATHEMATICAL ASPECTS OF SYMMETRIES, 2003, 173 : 553 - 556
  • [26] The axisymmetric Fokker-Planck-Landau operator
    Lemou, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (02): : 179 - 184
  • [27] Fluid moments of the nonlinear Landau collision operator
    Hirvijoki, E.
    Lingam, M.
    Pfefferle, D.
    Comisso, L.
    Candy, J.
    Bhattacharjee, A.
    PHYSICS OF PLASMAS, 2016, 23 (08)
  • [28] Collisional relaxation: Landau versus Dougherty operator
    Pezzi, Oreste
    Valentini, F.
    Veltri, P.
    JOURNAL OF PLASMA PHYSICS, 2015, 81
  • [29] EXTREMALS IN LANDAU-INEQUALITY FOR THE DIFFERENCE OPERATOR
    KWONG, MK
    ZETTL, A
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1987, 107 : 299 - 311
  • [30] Linear and nonlinear gyrokinetic dynamics in the presence of strong drifts: Formulation and applications
    Pozzo, M
    Tessarotto, M
    Zorat, R
    THEORY OF FUSION PLASMAS - PROCEEDINGS OF THE JOINT VARENNA-LAUSSANE INTERNATIONAL WORKSHOP, 1997, : 295 - 300