We provide a new separation-based proof of the domination theorem for (q, 1)-summing operators. This result gives the celebrated factorization theorem of Pisier for (q, 1)-summing operators acting in C(K)-spaces. As far as we know, none of the known versions of the proof uses the separation argument presented here, which is essentially the same that proves Pietsch Domination Theorem for p-summing operators. Based on this proof, we propose an equivalent formulation of the main summability properties for operators, which allows to consider a broad class of summability properties in Banach spaces. As a consequence, we are able to show new versions of the Dvoretzky-Rogers Theorem involving other notions of summability, and analyze some weighted extensions of the q-Orlicz property.
机构:
Univ Huelva, Fac Ciencias Expt, Dept Ciencias Integradas, Campus Univ El Carmen, Huelva 21071, SpainUniv Huelva, Fac Ciencias Expt, Dept Ciencias Integradas, Campus Univ El Carmen, Huelva 21071, Spain
Munoz, Fernando
Oja, Eve
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tartu, Inst Math & Stat, J Liivi 2, EE-50409 Tartu, Estonia
Estonian Acad Sci, Kohtu 6, EE-10130 Tallinn, EstoniaUniv Huelva, Fac Ciencias Expt, Dept Ciencias Integradas, Campus Univ El Carmen, Huelva 21071, Spain
Oja, Eve
Pineiro, Candido
论文数: 0引用数: 0
h-index: 0
机构:
Univ Huelva, Fac Ciencias Expt, Dept Ciencias Integradas, Campus Univ El Carmen, Huelva 21071, SpainUniv Huelva, Fac Ciencias Expt, Dept Ciencias Integradas, Campus Univ El Carmen, Huelva 21071, Spain