Computation, approximation and stability of explicit feedback min-max nonlinear model predictive control

被引:28
|
作者
Grancharova, Alexandra [1 ]
Johansen, Tor A. [2 ]
机构
[1] Bulgarian Acad Sci, Inst Control & Syst Res, BU-1113 Sofia, Bulgaria
[2] Norwegian Univ Sci & Technol, Dept Engn Cybernet, N-7491 Trondheim, Norway
关键词
Min-max model predictive control; Multi-parametric programming; l(2)-stability; RECEDING HORIZON CONTROL; MPC; SYSTEMS; STATE; DESIGN; INPUT;
D O I
10.1016/j.automatica.2008.12.023
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents an approximate multi-parametric Nonlinear Programming (mp-NLP) approach to explicit solution of feedback min-max NMPC problems for constrained nonlinear systems in the presence of bounded disturbances and/or parameter uncertainties. It is based on an orthogonal search tree structure of the state space partition and consists in constructing a piecewise nonlinear (PWNL) approximation to the optimal sequence of feedback control policies. Conditions guaranteeing the robust stability of the closed-loop system in terms of a finite l(2)-gain are derived. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1134 / 1143
页数:10
相关论文
共 50 条
  • [1] Explicit approximate approach to feedback min-max model predictive control of constrained nonlinear systems
    Grancharova, Alexandra
    Johansen, Tor A.
    [J]. PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 4852 - +
  • [2] Feedback min-max model predictive control using a single linear program: robust stability and the explicit solution
    Kerrigan, EC
    Maciejowski, JM
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2004, 14 (04) : 395 - 413
  • [3] On input-to-state stability of min-max nonlinear model predictive control
    Lazar, M.
    De la Pena, D. Munoz
    Heemels, W. P. M. H.
    Alamo, T.
    [J]. SYSTEMS & CONTROL LETTERS, 2008, 57 (01) : 39 - 48
  • [4] Min-max Model Predictive Control of Nonlinear Systems: A Unifying Overview on Stability
    Raimondo, Davide Martino
    Limon, Daniel
    Lazar, Mircea
    Magni, Lalo
    Fernandez Camacho, Eduardo
    [J]. EUROPEAN JOURNAL OF CONTROL, 2009, 15 (01) : 5 - 21
  • [5] Min-max feedback model predictive control with state estimation
    Jia, D
    Krogh, B
    [J]. ACC: PROCEEDINGS OF THE 2005 AMERICAN CONTROL CONFERENCE, VOLS 1-7, 2005, : 262 - 267
  • [6] A decomposition algorithm for feedback min-max model predictive control
    de la Pena, D. Munoz
    Alamo, T.
    Bemporad, A.
    [J]. 2005 44TH IEEE CONFERENCE ON DECISION AND CONTROL & EUROPEAN CONTROL CONFERENCE, VOLS 1-8, 2005, : 5126 - 5131
  • [7] A decomposition algorithm for feedback min-max model predictive control
    Munoz de la Pena, D.
    Alamo, T.
    Bemporad, A.
    Camacho, E. F.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (10) : 1688 - 1692
  • [8] Robustly stable feedback min-max model predictive control
    Kerrigan, EC
    Maciejowski, JM
    [J]. PROCEEDINGS OF THE 2003 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2003, : 3490 - 3495
  • [9] Min-max feedback model predictive control for distributed control with communication
    Jia, D
    Krogh, B
    [J]. PROCEEDINGS OF THE 2002 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2002, 1-6 : 4507 - 4512
  • [10] Explicit solution of min-max model predictive control for uncertain systems
    Gao, Yu
    Sun, Li Ning
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2016, 10 (04): : 461 - 468