The confined random walks in two-dimensional bounded domain

被引:2
|
作者
Ciftci, H. [1 ]
Cakmak, M. [1 ]
机构
[1] Gazi Univ Teknikokullar, Dept Phys, TR-06500 Ankara, Turkey
关键词
FOKKER-PLANCK EQUATIONS; DIFFUSIVE RANDOM-WALKS;
D O I
10.1209/0295-5075/87/60003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show how the random walks present different results under some special conditions. We have especially investigated confined random walks in two dimensions. Copyright (C) EPLA, 2009
引用
收藏
页数:3
相关论文
共 50 条
  • [21] Efficient random walks in the presence of complex two-dimensional geometries
    Ramachandran, Prabhu
    Ramakrishna, A.
    Rajan, S. C.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 53 (02) : 329 - 344
  • [22] A finite compensation procedure for a class of two-dimensional random walks
    Adan, Ivo J. B. F.
    Dimitriou, Ioannis
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2023, 34 (05): : 891 - 935
  • [23] Number of times a site is visited in two-dimensional random walks
    Ferraro, M
    Zaninetti, L
    PHYSICAL REVIEW E, 2001, 64 (05):
  • [24] Geometrical aspects of quantum walks on random two-dimensional structures
    Anishchenko, Anastasiia
    Blumen, Alexander
    Muelken, Oliver
    PHYSICAL REVIEW E, 2013, 88 (06):
  • [25] Random walks in two-dimensional glass-like environments
    Schulz, B
    Trimper, S
    PHYSICS LETTERS A, 1999, 256 (04) : 266 - 271
  • [26] Area Distribution of Two-Dimensional Random Walks on a Square Lattice
    Stefan Mashkevich
    Stéphane Ouvry
    Journal of Statistical Physics, 2009, 137 : 71 - 78
  • [27] Stopped two-dimensional perturbed random walks and Levy processes
    Gut, A
    STATISTICS & PROBABILITY LETTERS, 1997, 35 (04) : 317 - 325
  • [28] Green kernel asymptotics for two-dimensional random walks under random conductances
    Andres, Sebastian
    Deuschel, Jean-Dominique
    Slowik, Martin
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2020, 25 : 1 - 14
  • [29] Critical random walks on two-dimensional complexes with applications to polling systems
    MacPhee, IM
    Menshikov, MV
    ANNALS OF APPLIED PROBABILITY, 2003, 13 (04): : 1399 - 1422
  • [30] The persistence length of two-dimensional self-avoiding random walks
    Eisenberg, E
    Baram, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (08): : L121 - L124