Hierarchical Graph Attention Based Multi-View Convolutional Neural Network for 3D Object Recognition

被引:6
|
作者
Zeng, Hui [1 ,2 ]
Zhao, Tianmeng [1 ]
Cheng, Ruting [1 ]
Wang, Fuzhou [1 ]
Liu, Jiwei [1 ,2 ]
机构
[1] Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing Engn Res Ctr Ind Spectrum Imaging, Beijing 100083, Peoples R China
[2] Univ Sci & Technol Beijing, Shunde Grad Sch, Foshan 528399, Peoples R China
来源
IEEE ACCESS | 2021年 / 9卷 / 09期
基金
中国国家自然科学基金;
关键词
Three-dimensional displays; Object recognition; Two dimensional displays; Neural networks; Feature extraction; Solid modeling; Convolutional neural networks; 3D object recognition; multi-view convolutional neural network; graph attention network; feature aggregation; CLASSIFICATION;
D O I
10.1109/ACCESS.2021.3059853
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For multi-view convolutional neural network based 3D object recognition, how to fuse the information of multiple views is a key factor affecting the recognition performance. Most traditional methods use max-pooling algorithm to obtain the final 3D object feature, which does not take into account the correlative information between different views. To make full use of the effective information of multiple views, this paper introduces the hierarchical graph attention based multi-view convolutional neural network for 3D object recognition. At first, the view selection module is proposed to reduce redundant view information in multiple views, which can select the projective views with more effective information. Then, the correlation weighted feature aggregation module is proposed to better fuse multiple view features. Finally, the hierarchical feature aggregation network structure is designed to further to make full use of the correlation information of multiple views. Extensive experimental results have validated the effectiveness of the proposed method.
引用
收藏
页码:33323 / 33335
页数:13
相关论文
共 50 条
  • [21] Multi-View Hierarchical Fusion Network for 3D Object Retrieval and Classification
    Liu, An-An
    Hu, Nian
    Song, Dan
    Guo, Fu-Bin
    Zhou, He-Yu
    Hao, Tong
    IEEE ACCESS, 2019, 7 : 153021 - 153030
  • [22] Aggregated Deep Convolutional Neural Networks for Multi-View 3D Object Retrieval
    Alzu'bi, Ahmad
    Abuarqoub, Abdelrahman
    Al-Hmouz, Ahmed
    2019 11TH INTERNATIONAL CONGRESS ON ULTRA MODERN TELECOMMUNICATIONS AND CONTROL SYSTEMS AND WORKSHOPS (ICUMT), 2019,
  • [23] Group-Pair Convolutional Neural Networks for Multi-View Based 3D Object Retrieval
    Gao, Zan
    Wang, Deyu
    He, Xiangnan
    Zhang, Hua
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 2223 - 2231
  • [24] Attention-based stackable graph convolutional network for multi-view learning
    Xu, Zhiyong
    Chen, Weibin
    Zou, Ying
    Fang, Zihan
    Wang, Shiping
    NEURAL NETWORKS, 2024, 180
  • [25] Multi-view-based siamese convolutional neural network for 3D object retrieval
    Li, Haisheng
    Zheng, Yanping
    Cao, Jian
    Cai, Qiang
    COMPUTERS & ELECTRICAL ENGINEERING, 2019, 78 : 11 - 21
  • [26] DeepCCFV: Camera Constraint-Free Multi-View Convolutional Neural Network for 3D Object Retrieval
    Huang, Zhengyue
    Zhao, Zhehui
    Zhou, Hengguang
    Zhao, Xibin
    Gao, Yue
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 8505 - 8512
  • [27] Multi-view Face Recognition and Verification Based on Convolutional Neural Network
    Zeng, Xiongjun
    Wu, Qingxiang
    Han, Ming
    Huang, Xi
    2018 11TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2018), 2018,
  • [28] Spatial Attention-Based 3D Graph Convolutional Neural Network for Sign Language Recognition
    Al-Hammadi, Muneer
    Bencherif, Mohamed A.
    Alsulaiman, Mansour
    Muhammad, Ghulam
    Mekhtiche, Mohamed Amine
    Abdul, Wadood
    Alohali, Yousef A.
    Alrayes, Tareq S.
    Mathkour, Hassan
    Faisal, Mohammed
    Algabri, Mohammed
    Altaheri, Hamdi
    Alfakih, Taha
    Ghaleb, Hamid
    SENSORS, 2022, 22 (12)
  • [29] Learning Relationships for Multi-View 3D Object Recognition
    Yang, Ze
    Wang, Liwei
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 7504 - 7513
  • [30] Joint Multi-view 2D Convolutional Neural Networks for 3D Object Classification
    Xu, Jinglin
    Zhang, Xiangsen
    Li, Wenbin
    Liu, Xinwang
    Han, Junwei
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 3202 - 3208