Hierarchical Graph Attention Based Multi-View Convolutional Neural Network for 3D Object Recognition

被引:6
|
作者
Zeng, Hui [1 ,2 ]
Zhao, Tianmeng [1 ]
Cheng, Ruting [1 ]
Wang, Fuzhou [1 ]
Liu, Jiwei [1 ,2 ]
机构
[1] Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing Engn Res Ctr Ind Spectrum Imaging, Beijing 100083, Peoples R China
[2] Univ Sci & Technol Beijing, Shunde Grad Sch, Foshan 528399, Peoples R China
来源
IEEE ACCESS | 2021年 / 9卷 / 09期
基金
中国国家自然科学基金;
关键词
Three-dimensional displays; Object recognition; Two dimensional displays; Neural networks; Feature extraction; Solid modeling; Convolutional neural networks; 3D object recognition; multi-view convolutional neural network; graph attention network; feature aggregation; CLASSIFICATION;
D O I
10.1109/ACCESS.2021.3059853
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For multi-view convolutional neural network based 3D object recognition, how to fuse the information of multiple views is a key factor affecting the recognition performance. Most traditional methods use max-pooling algorithm to obtain the final 3D object feature, which does not take into account the correlative information between different views. To make full use of the effective information of multiple views, this paper introduces the hierarchical graph attention based multi-view convolutional neural network for 3D object recognition. At first, the view selection module is proposed to reduce redundant view information in multiple views, which can select the projective views with more effective information. Then, the correlation weighted feature aggregation module is proposed to better fuse multiple view features. Finally, the hierarchical feature aggregation network structure is designed to further to make full use of the correlation information of multiple views. Extensive experimental results have validated the effectiveness of the proposed method.
引用
收藏
页码:33323 / 33335
页数:13
相关论文
共 50 条
  • [1] 3D object recognition based on pairwise Multi-view Convolutional Neural Networks
    Gao, Z.
    Wang, D. Y.
    Xue, Y. B.
    Xu, G. P.
    Zhang, H.
    Wang, Y. L.
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2018, 56 : 305 - 315
  • [2] Multi-view dual attention network for 3D object recognition
    Wenju Wang
    Yu Cai
    Tao Wang
    Neural Computing and Applications, 2022, 34 : 3201 - 3212
  • [3] Multi-view dual attention network for 3D object recognition
    Wang, Wenju
    Cai, Yu
    Wang, Tao
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (04): : 3201 - 3212
  • [4] Drcnn: Dynamic routing convolutional neural network for multi-view 3d object recognition
    Sun, Kai
    Zhang, Jiangshe
    Liu, Junmin
    Yu, Ruixuan
    Song, Zengjie
    IEEE Transactions on Image Processing, 2021, 30 : 868 - 877
  • [5] DRCNN: Dynamic Routing Convolutional Neural Network for Multi-View 3D Object Recognition
    Sun, Kai
    Zhang, Jiangshe
    Liu, Junmin
    Yu, Ruixuan
    Song, Zengjie
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 868 - 877
  • [6] 3D Point Cloud Recognition Based on a Multi-View Convolutional Neural Network
    Zhang, Le
    Sun, Jian
    Zheng, Qiang
    SENSORS, 2018, 18 (11)
  • [7] An Improved Multi-View Convolutional Neural Network for 3D Object Retrieval
    He, Xinwei
    Bai, Song
    Chu, Jiajia
    Bai, Xiang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 7917 - 7930
  • [8] 3D object retrieval based on multi-view convolutional neural networks
    Li, Xi-Xi
    Cao, Qun
    Wei, Sha
    MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (19) : 20111 - 20124
  • [9] 3D object retrieval based on multi-view convolutional neural networks
    Xi-Xi Li
    Qun Cao
    Sha Wei
    Multimedia Tools and Applications, 2017, 76 : 20111 - 20124
  • [10] Multi-View Hierarchical Attention Graph Convolutional Network with Domain Adaptation for EEG Emotion Recognition
    Li, Chao
    Wang, Feng
    Bian, Ning
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CRYPTOGRAPHY, NETWORK SECURITY AND COMMUNICATION TECHNOLOGY, CNSCT 2024, 2024, : 624 - 630