Small Clique Detection and Approximate Nash Equilibria

被引:0
|
作者
Minder, Lorenz [1 ]
Vilenchik, Dan [1 ]
机构
[1] Univ Calif Berkeley, Div Comp Sci, Berkeley, CA 94720 USA
来源
APPROXIMATION, RANDOMIZATION, AND COMBINATORIAL OPTIMIZATION: ALGORITHMS AND TECHNIQUES | 2009年 / 5687卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Recently, Hazan and Krauthgamer showed [12] that if, for a fixed small epsilon, an epsilon-best epsilon-approximate Nash equilibrium can be found in polynomial time in two-player games, then it is also possible to find a planted clique in G(n, 1/2) of size C log n, where C is a large fixed constant independent of epsilon. In this paper, we extend their result to show that if an epsilon-best epsilon-approximate equilibrium can be efficiently found for arbitrarily small epsilon > 0, then one can detect the presence of a planted clique of size (2 + delta) log n in G(n, 1/2) in polynomial time for arbitrarily small delta > 0. Our result is optimal in the sense that graphs in G(n, 1/2) have cliques of size (2 - o(1)) log n with high probability.
引用
收藏
页码:673 / 685
页数:13
相关论文
共 50 条
  • [21] Simple Algorithmic Techniques to Approximate Nash Equilibria
    Panagopoulou, Panagiota N.
    22ND PAN-HELLENIC CONFERENCE ON INFORMATICS (PCI 2018), 2018, : 4 - 9
  • [22] Computing Approximate Nash Equilibria in Polymatrix Games
    Deligkas, Argyrios
    Fearnley, John
    Savani, Rahul
    Spirakis, Paul
    ALGORITHMICA, 2017, 77 (02) : 487 - 514
  • [23] Lower semicontinuity for approximate social Nash equilibria
    Morgan, J
    Raucci, R
    INTERNATIONAL JOURNAL OF GAME THEORY, 2003, 31 (04) : 499 - 509
  • [24] Computing Approximate Nash Equilibria in Polymatrix Games
    Argyrios Deligkas
    John Fearnley
    Rahul Savani
    Paul Spirakis
    Algorithmica, 2017, 77 : 487 - 514
  • [25] Inapproximability results for constrained approximate Nash equilibria
    Deligkas, Argyrios
    Fearnley, John
    Savani, Rahul
    INFORMATION AND COMPUTATION, 2018, 262 : 40 - 56
  • [26] THE COMPUTATION OF APPROXIMATE GENERALIZED FEEDBACK NASH EQUILIBRIA
    Laine, Forrest
    Fridovich-Keil, David
    Chiu, Chih-Yuan
    Tomlin, Claire
    SIAM JOURNAL ON OPTIMIZATION, 2023, 33 (01) : 294 - 318
  • [27] New algorithms for approximate Nash equilibria in bimatrix games
    Bosse, Hartwig
    Byrka, Jaroslaw
    Markakis, Evangelos
    THEORETICAL COMPUTER SCIENCE, 2010, 411 (01) : 164 - 173
  • [28] Approximate nash equilibria for multi-player games
    Hemon, Sbastien
    de Rougemont, Michel
    Santha, Miklos
    ALGORITHMIC GAME THEORY, PROCEEDINGS, 2008, 4997 : 267 - 278
  • [29] Approximate Nash Equilibria with Near Optimal Social Welfare
    Czumaj, Artur
    Fasoulakis, Michail
    Jurdzinski, Marcin
    PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), 2015, : 504 - 510
  • [30] Computing Approximate Pure Nash Equilibria in Congestion Games
    Caragiannis, Ioannis
    Fanelli, Angelo
    Gravin, Nick
    Skopalik, Alexander
    ACM SIGECOM EXCHANGES, 2012, 11 (01) : 26 - 29