Pseudocompact topological group refinements of maximal weight

被引:10
|
作者
Comfort, WW [1 ]
Galindo, J
机构
[1] Wesleyan Univ, Dept Math, Middletown, CT 06459 USA
[2] Univ Jaume 1, Dept Matemat, Castellon de La Plana, Spain
关键词
topological group; pseudocompact; refinement topology; maximal weight;
D O I
10.1090/S0002-9939-02-06650-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is known that a compact metrizable group admits no proper pseudocompact topological group refinement. The authors show, in contrast, that every (Hausdorff) pseudocompact Abelian group G = (G, T) of uncountable weight alpha, satisfying any of the following conditions, admits a pseudocompact group refinement of maximal weight (that is, of weight 2(\G\)): (i) G is compact; (ii) G is torsion-free with alpha less than or equal to \G\ = \G\(omega); (iii) [CCH] G is torsion-free. Remark. (i) answers a question posed by Comfort and Remus [Math. Zeitschrift 215 (1994), 337 346].
引用
收藏
页码:1311 / 1320
页数:10
相关论文
共 50 条
  • [31] CARDINALITY CONSTRAINTS FOR PSEUDOCOMPACT AND FOR TOTALLY DENSE SUBGROUPS OF COMPACT TOPOLOGICAL-GROUPS
    COMFORT, WW
    ROBERTSON, LC
    PACIFIC JOURNAL OF MATHEMATICS, 1985, 119 (02) : 265 - 285
  • [32] Fuzzy-operators weight refinements
    Manic, M
    ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM, 1999 PROCEEDINGS, 1999, : 245 - 251
  • [33] On maximal block topological space
    Ibrahim, Nechervan B.
    Khalaf, Alias B.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (05) : 8541 - 8551
  • [34] MAXIMAL IDEALS IN TOPOLOGICAL ALGEBRAS
    BECKENST.E
    BACHMAN, GB
    NARICI, LR
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (05): : 820 - &
  • [35] MAXIMAL IDEALS IN TOPOLOGICAL ALGEBRAS
    BECKENSTEIN, E
    BACHMAN, G
    NARICI, L
    JOURNAL D ANALYSE MATHEMATIQUE, 1972, 25 : 159 - +
  • [36] MAXIMAL CONNECTED TOPOLOGICAL SPACES
    THOMAS, JP
    AMERICAN MATHEMATICAL MONTHLY, 1966, 73 (07): : 811 - &
  • [37] TOPOLOGICAL MAXIMAL-PRINCIPLES
    BRUNNER, N
    ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1987, 33 (02): : 135 - 139
  • [38] ON THE CONSTRUCTION OF SUFFICIENT REFINEMENTS FOR COMPUTATION OF TOPOLOGICAL-DEGREE
    STYNES, M
    NUMERISCHE MATHEMATIK, 1981, 37 (03) : 453 - 462
  • [39] Vague topological predicates for crisp regions through metric refinements
    Schneider, M
    DEVELOPMENTS IN SPATIAL DATA HANDLING, 2005, : 149 - 162
  • [40] The Group Selection Questionnaire: Further Refinements in Group Member Selection
    Burlingame, Gary M.
    Cox, Jonathan C.
    Davies, D. Rob
    Layne, Christopher M.
    Gleave, Robert
    GROUP DYNAMICS-THEORY RESEARCH AND PRACTICE, 2011, 15 (01) : 60 - 74