Analysis of networks with missing data with application to the National Longitudinal Study of Adolescent Health

被引:17
|
作者
Gile, Krista J. [1 ]
Handcock, Mark S. [2 ]
机构
[1] Univ Massachusetts Amherst, Amherst, MA USA
[2] Univ Calif Los Angeles, Los Angeles, CA 90024 USA
基金
美国国家科学基金会;
关键词
Dependent data; Exponential random-graph model; Missing data; Missingness not at random; Social networks; RANDOM GRAPH MODELS; EXPONENTIAL FAMILY; MAXIMUM-LIKELIHOOD; SOCIAL NETWORKS; INFERENCE;
D O I
10.1111/rssc.12184
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
It is common in the analysis of social network data to assume a census of the networked population of interest. Often the observations are subject to partial observation due to a known sampling or unknown missing data mechanism. However, most social network analysis ignores the problem of missing data by including only actors with complete observations. We address the modelling of networks with missing data, developing previous ideas in missing data, network modelling and network sampling. We use several methods including the mean value parameterization to show the quantitative and substantive differences between naive and principled modelling approaches. We also develop goodness-of-fit techniques to understand model fit better. The ideas are motivated by an analysis of a friendship network from the National Longitudinal Study of Adolescent Health.
引用
收藏
页码:501 / 519
页数:19
相关论文
共 50 条
  • [21] Longitudinal Trajectories of BMI and Cardiovascular Disease Risk: The National Longitudinal Study of Adolescent Health
    Attard, Samantha M.
    Herring, Amy H.
    Howard, Annie Green
    Gordon-Larsen, Penny
    OBESITY, 2013, 21 (11) : 2180 - 2188
  • [22] Re: "Effect of smoking on depressive symptomatology: A reexamination of data from the National Longitudinal Study of Adolescent Health"
    Goodman, E
    Capitman, JA
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2006, 163 (08) : 779 - 779
  • [23] Analytic strategies for longitudinal networks with missing data
    de la Haye, Kayla
    Embree, Joshua
    Punkay, Marc
    Espelage, Dorothy L.
    Tucker, Joan S.
    Green, Harold D., Jr.
    SOCIAL NETWORKS, 2017, 50 : 17 - 25
  • [24] Editorial: Longitudinal data analysis in child and adolescent mental health
    Hirota, Tomoya
    McElroy, Eoin
    Fujiwara, Takeo
    Boden, Joseph
    FRONTIERS IN PSYCHIATRY, 2022, 13
  • [25] Missing data approaches in longitudinal studies of aging: A case example using the National Health and Aging Trends Study
    Duchesneau, Emilie D.
    Shmuel, Shahar
    Faurot, Keturah R.
    Musty, Allison
    Park, Jihye
    Stuermer, Til
    Kinlaw, Alan C.
    Yang, Yang Claire
    Lund, Jennifer L.
    PLOS ONE, 2023, 18 (06):
  • [27] Measuring personality in wave I of the national longitudinal study of adolescent health
    Young, J. Kenneth
    Beaujean, A. Alexander
    FRONTIERS IN PSYCHOLOGY, 2011, 2
  • [28] The National Longitudinal Study on Adolescent Health - Preliminary results: Great expectations
    Klein, JD
    JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 1997, 278 (10): : 864 - 865
  • [29] Imputation and Missing Indicators for Handling Missing Longitudinal Data: Data Simulation Analysis Based on Electronic Health Record Data
    Ehrig, Molly
    Bullock, Garrett S.
    Leng, Xiaoyan Iris
    Pajewski, Nicholas M.
    Speiser, Jaime Lynn
    JMIR MEDICAL INFORMATICS, 2025, 13
  • [30] Visual Analysis of Missing Values in Longitudinal Cohort Study Data
    Alemzadeh, S.
    Niemann, U.
    Ittermann, T.
    Voelzke, H.
    Schneider, D.
    Spiliopoulou, M.
    Buehler, K.
    Preim, B.
    COMPUTER GRAPHICS FORUM, 2020, 39 (01) : 63 - 75