GLOBAL EXISTENCE AND DECAY ESTIMATES FOR THE CLASSICAL SOLUTIONS TO A COMPRESSIBLE FLUID-PARTICLE INTERACTION MODEL

被引:4
|
作者
Ding, Shijin [1 ]
Huang, Bingyuan [2 ]
Li, Quanrong [3 ]
机构
[1] South China Normal Univ, Sch Math Sci, South China Res Ctr Appl Math & Interdisciplinary, Guangzhou 510631, Guangdong, Peoples R China
[2] Hanshan Normal Univ, Sch Math & Stat, Chaozhou 521041, Peoples R China
[3] Shenzhen Univ, Coll Math & Stat, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
compressible Navier-Stokes-Smoluchowski; global classical solutions; optimal decay rates; NAVIER-STOKES EQUATIONS; MOTION;
D O I
10.1007/s10473-019-0605-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the global existence of classical solutions to a fluid-particle interaction model in Double-struck capital R-3, namely, compressible Navier-Stokes-Smoluchowski equations, when the initial data are close to the stationary state (rho(*), 0, eta(*)) and the external potential satisfies the smallness assumption. Furthermore, optimal decay rates of classical solutions in H-3-framework are obtained.
引用
收藏
页码:1525 / 1537
页数:13
相关论文
共 50 条
  • [1] GLOBAL EXISTENCE AND DECAY ESTIMATES FOR THE CLASSICAL SOLUTIONS TO A COMPRESSIBLE FLUID-PARTICLE INTERACTION MODEL
    丁时进
    黄丙远
    黎泉荣
    Acta Mathematica Scientia, 2019, 39 (06) : 1525 - 1537
  • [2] Global Existence and Decay Estimates for the Classical Solutions to a Compressible Fluid-Particle Interaction Model
    Shijin Ding
    Bingyuan Huang
    Quanrong Li
    Acta Mathematica Scientia, 2019, 39 : 1525 - 1537
  • [3] GLOBAL CLASSICAL SOLUTIONS FOR A COMPRESSIBLE FLUID-PARTICLE INTERACTION MODEL
    Chae, Myeongju
    Kang, Kyungkeun
    Lee, Jihoon
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2013, 10 (03) : 537 - 562
  • [4] THE GLOBAL EXISTENCE AND UNIQUENESS OF SMOOTH SOLUTIONS TO A FLUID-PARTICLE INTERACTION MODEL IN THE FLOWING REGIME
    郑琳
    王术
    Acta Mathematica Scientia, 2024, 44 (05) : 1877 - 1885
  • [5] The global existence and uniqueness of smooth solutions to a fluid-particle interaction model in the flowing regime
    Zheng, Lin
    Wang, Shu
    ACTA MATHEMATICA SCIENTIA, 2024, 44 (05) : 1877 - 1885
  • [6] Global classical large solutions to a 1D fluid-particle interaction model: The bubbling regime
    Fang, Daoyuan
    Zi, Ruizhao
    Zhang, Ting
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (03)
  • [7] CLASSICAL SOLUTIONS OF THE 3D COMPRESSIBLE FLUID-PARTICLE SYSTEM WITH A MAGNETIC FIELD
    黄丙远
    丁时进
    伍日清
    Acta Mathematica Scientia, 2022, 42 (04) : 1585 - 1606
  • [8] Classical Solutions of the 3D Compressible Fluid-Particle System with a Magnetic Field
    Bingyuan Huang
    Shijin Ding
    Riqing Wu
    Acta Mathematica Scientia, 2022, 42 : 1585 - 1606
  • [9] Classical Solutions of the 3D Compressible Fluid-Particle System with a Magnetic Field
    Huang, Bingyuan
    Ding, Shijin
    Wu, Riqing
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (04) : 1585 - 1606
  • [10] BLOWUP CRITERION FOR THE COMPRESSIBLE FLUID-PARTICLE INTERACTION MODEL IN 3D WITH VACUUM
    Ding, Shijin
    Huang, Bingyuan
    Lu, Youbo
    ACTA MATHEMATICA SCIENTIA, 2016, 36 (04) : 1030 - 1048