Global classical large solutions to a 1D fluid-particle interaction model: The bubbling regime

被引:23
|
作者
Fang, Daoyuan [1 ]
Zi, Ruizhao [1 ]
Zhang, Ting [1 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
关键词
NAVIER-STOKES EQUATIONS; ASYMPTOTIC ANALYSIS; HYDRODYNAMIC LIMIT; SYSTEM; FLOW; SEDIMENTATION; VACUUM; SPRAY;
D O I
10.1063/1.3693979
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper is concerned with the 1D fluid-particle interaction model in the so-called bubbling regime which describes the evolution of particles dispersed in a viscous compressible fluid. The model under investigation is described by the conservation of fluid mass, the balance of momentum and the balance of particle density. We obtained the global existence and uniqueness of the classical large solution to this model with the initial fluid density rho(0) admitting vacuum. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3693979]
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Strong solutions for a 1D fluid-particle interaction non-newtonian model: The bubbling regime
    Song, Yukun
    Yuan, Hongjun
    Chen, Yang
    Guo, Zhidong
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (09)
  • [2] On the dynamics of a fluid-particle interaction model: The bubbling regime
    Carrillo, J. A.
    Karper, T.
    Trivisa, K.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (08) : 2778 - 2801
  • [3] GLOBAL CLASSICAL SOLUTIONS FOR A COMPRESSIBLE FLUID-PARTICLE INTERACTION MODEL
    Chae, Myeongju
    Kang, Kyungkeun
    Lee, Jihoon
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2013, 10 (03) : 537 - 562
  • [4] THE GLOBAL EXISTENCE AND UNIQUENESS OF SMOOTH SOLUTIONS TO A FLUID-PARTICLE INTERACTION MODEL IN THE FLOWING REGIME
    郑琳
    王术
    Acta Mathematica Scientia, 2024, 44 (05) : 1877 - 1885
  • [5] GLOBAL EXISTENCE AND DECAY ESTIMATES FOR THE CLASSICAL SOLUTIONS TO A COMPRESSIBLE FLUID-PARTICLE INTERACTION MODEL
    Ding, Shijin
    Huang, Bingyuan
    Li, Quanrong
    ACTA MATHEMATICA SCIENTIA, 2019, 39 (06) : 1525 - 1537
  • [6] The global existence and uniqueness of smooth solutions to a fluid-particle interaction model in the flowing regime
    Zheng, Lin
    Wang, Shu
    ACTA MATHEMATICA SCIENTIA, 2024, 44 (05) : 1877 - 1885
  • [7] Global Existence and Decay Estimates for the Classical Solutions to a Compressible Fluid-Particle Interaction Model
    Shijin Ding
    Bingyuan Huang
    Quanrong Li
    Acta Mathematica Scientia, 2019, 39 : 1525 - 1537
  • [8] GLOBAL EXISTENCE AND DECAY ESTIMATES FOR THE CLASSICAL SOLUTIONS TO A COMPRESSIBLE FLUID-PARTICLE INTERACTION MODEL
    丁时进
    黄丙远
    黎泉荣
    Acta Mathematica Scientia, 2019, 39 (06) : 1525 - 1537
  • [9] Feedback stabilization of a simplified 1d fluid-particle system
    Badra, Mehdi
    Takahashi, Takeo
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (02): : 369 - 389
  • [10] Classical Solutions of the 3D Compressible Fluid-Particle System with a Magnetic Field
    Bingyuan Huang
    Shijin Ding
    Riqing Wu
    Acta Mathematica Scientia, 2022, 42 : 1585 - 1606