Jordan derivations of alternative rings

被引:9
|
作者
Macedo Ferreira, Bruno Leonardo [1 ]
Guzzo Jr, Henrique [2 ]
Ferreira, Ruth Nascimento [1 ]
Wei, Feng [3 ]
机构
[1] Fed Technol Univ Parana, Prof Laura Pacheco Bastos Ave 800, BR-85053510 Guarapuava, Brazil
[2] Univ Sao Paulo, Inst Math & Stat, Sao Paulo, Brazil
[3] Beijing Inst Technol, Sch Math & Stat, Beijing, Peoples R China
关键词
Alternative ring; Jordan derivation; ALGEBRAS;
D O I
10.1080/00927872.2019.1659285
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let be a unital alternative ring with nontrivial idempotent and be a Jordan derivation. Then is of the form , where d is a derivation of and delta is a singular Jordan derivation of . Moreover, d and delta are uniquely determined. This extends the main result of Benkovic and Sirovnik's to the case of alternative rings.
引用
收藏
页码:717 / 723
页数:7
相关论文
共 50 条
  • [21] Jordan derivations of finitary incidence rings
    Khrypchenko, Mykola
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (10): : 2104 - 2118
  • [22] Jordan τ-Derivations of Locally Matrix Rings
    Chuang, Chen-Lian
    Fosner, Ajda
    Lee, Tsiu-Kwen
    ALGEBRAS AND REPRESENTATION THEORY, 2013, 16 (03) : 755 - 763
  • [23] Derivations and Jordan ideals in prime rings
    Oukhtite, Lahcen
    Mamouni, Abdellah
    Beddani, Charef
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2014, 8 (04): : 364 - 369
  • [24] Characterizations of Jordan derivations on rings with idempotent
    An, Runling
    Hou, Jinchuan
    LINEAR & MULTILINEAR ALGEBRA, 2010, 58 (06): : 753 - 763
  • [25] A note on Jordan derivations of triangular rings
    Ajda Fošner
    Wu Jing
    Aequationes mathematicae, 2020, 94 : 277 - 285
  • [26] Weak Jordan derivations of prime rings
    Lin, Jheng-Huei
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (08): : 1422 - 1445
  • [27] GENERALIZED JORDAN DERIVATIONS ON SEMIPRIME RINGS
    Ferreira, Bruno L. M.
    Ferreira, Ruth N.
    Guzzo, Henrique, Jr.
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 109 (01) : 36 - 43
  • [28] On generalized Jordan left derivations in rings
    Ashraf, Mohammad
    Ali, Shakir
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 45 (02) : 253 - 261
  • [29] JORDAN DERIVATIONS ON PRIME-RINGS
    BRESAR, M
    VUKMAN, J
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1988, 37 (03) : 321 - 322
  • [30] Rings with simple Lie rings of Lie and Jordan derivations
    Al Khalaf, Ahmad
    Artemovych, Orest D.
    Taha, Iman
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2018, 17 (04)