The partial sum criterion for Steiner trees in graphs and shortest paths

被引:21
|
作者
Duin, CW [1 ]
Volgenant, A [1 ]
机构
[1] UNIV AMSTERDAM,INST ACTUARIAL SCI & ECONOMETR,OPERAT RES GRP,FAC ECON & ECONOMETR,NL-1018 WB AMSTERDAM,NETHERLANDS
关键词
network programming; Steiner tree in graph; shortest path; partial sum criterion;
D O I
10.1016/S0377-2217(96)00113-0
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
The partial sum criterion with parameter p adds up the p largest weights in the solution, giving the criterion value to be minimized. For p = 1 the criterion is the bottleneck or minmax criterion. For the minmax Steiner tree problem in graphs we describe an O(\E\) algorithm with E being the set of edges in the problem graph. The algorithm unifies two existing algorithms, one of them solves the bottleneck shortest path problem and the other the bottleneck spanning tree problem. For the shortest path problem we consider the criterion for arbitrary values of p, defining it for solutions with less than p edges as the total sum. For an undirected graph with n nodes we present an O(n(3)) algorithm to determine, simultaneously, partial sum shortest paths between all pairs of nodes and for all values of the parameter p. For the 2-sum shortest path problem and one pair of nodes we give an O(\E\ + n log n) algorithm. By exploiting this algorithm we obtain the same complexity for the 2-sum Steiner tree problem in graphs. Furthermore, we discuss the complexity of related problems and alternative partial sum criteria.
引用
收藏
页码:172 / 182
页数:11
相关论文
共 50 条
  • [21] Drawing Shortest Paths in Geodetic Graphs
    Cornelsen S.
    Pfister M.
    Förster H.
    Gronemann M.
    Hoffmann M.
    Kobourov S.
    Schneck T.
    Journal of Graph Algorithms and Applications, 2022, 26 (03) : 353 - 361
  • [22] Shortest paths in random weighted graphs
    Walley, SK
    Tan, HH
    COMPUTING AND COMBINATORICS, 1995, 959 : 213 - 222
  • [23] Shortest noncrossing paths in plane graphs
    Takahashi, JY
    Suzuki, H
    Nishizeki, T
    ALGORITHMICA, 1996, 16 (03) : 339 - 357
  • [24] On Shortest Disjoint Paths in Planar Graphs
    Kobayashi, Yusuke
    Sommer, Christian
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2009, 5878 : 293 - +
  • [25] Fuzzy shortest paths in fuzzy graphs
    Baniamerian, Amir
    Menhaj, Mohammad Bagher
    COMPUTATIONAL INTELLIGENCE, THEORY AND APPLICATION, 2006, : 757 - 764
  • [26] Rerouting shortest paths in planar graphs
    Bonsma, Paul
    DISCRETE APPLIED MATHEMATICS, 2017, 231 : 95 - 112
  • [27] SHORTEST PATHS ANONYMIZATION ON WEIGHTED GRAPHS
    Wang, Shyue-Liang
    Tsai, Yu-Chuan
    Kao, Hung-Yu
    Ting, I-Hsien
    Hong, Tzung-Pei
    INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING, 2013, 23 (01) : 65 - 79
  • [28] Shortest paths in almost acyclic graphs
    Wagner, DK
    OPERATIONS RESEARCH LETTERS, 2000, 27 (04) : 143 - 147
  • [29] Shortest paths in fuzzy weighted graphs
    Cornelis, C
    De Kesel, P
    Kerre, EE
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2004, 19 (11) : 1051 - 1068
  • [30] ON GRAPHS COVERABLE BY k SHORTEST PATHS
    Dumas, Mael
    Foucaud, Florent
    Perez, Anthony
    Todinca, Ioan
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2024, 38 (02) : 1840 - 1862