A Set of Activity-Based Probes to Visualize Human (Immuno)proteasome Activities

被引:86
|
作者
de Bruin, Gerjan [1 ]
Xin, Bo Tao [1 ]
Kraus, Marianne [2 ]
van der Stelt, Mario [1 ]
van der Marel, Gijsbert A. [1 ]
Kisselev, Alexei F. [3 ]
Driessen, Christoph [2 ]
Florea, Bogdan I. [1 ]
Overkleeft, Herman S. [1 ]
机构
[1] Leiden Univ, Leiden Inst Chem, Einsteinweg 55, NL-2333 CC Leiden, Netherlands
[2] Kantonsspital St Gallen, Dept Hematol & Oncol, CH-9007 St Gallen, Switzerland
[3] Dartmouth Med Sch, Dept Pharmacol & Toxicol, Norris Cotton Canc Ctr, One Med Ctr Dr, Lebanon, NH 03756 USA
关键词
activity-based protein profiling; anticancer agents; fluorescent probes; inhibitors; proteasome; PROTEASOME INHIBITOR; IN-VIVO; MULTIPLE-MYELOMA; ANTIGEN PRESENTATION; CELL-LINES; BORTEZOMIB; SPECIFICITY; SUBSTRATE; SITES; IMMUNOPROTEASOMES;
D O I
10.1002/anie.201509092
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Proteasomes are therapeutic targets for various cancers and autoimmune diseases. Constitutively expressed proteasomes have three active sites, 1c, 2c, and 5c. Lymphoid tissues also express the immunoproteasome subunits 1i, 2i, and 5i. Rapid and simultaneous measurement of the activity of these catalytic subunits would assist in the discovery of new inhibitors, improve analysis of proteasome inhibitors in clinical trials, and simplify analysis of subunit expression. In this work, we present a cocktail of activity-based probes that enables simultaneous gel-based detection of all six catalytic human proteasome subunits. We used this cocktail to develop specific inhibitors for 1c, 2c, 5c, and 2i, to compare the active-site specificity of clinical proteasome inhibitors, and to demonstrate that many hematologic malignancies predominantly express immunoproteasomes. Furthermore, we show that selective and complete inhibition of 5i and 1i is cytotoxic to primary cells from acute lymphocytic leukemia (ALL) patients.
引用
收藏
页码:4199 / 4203
页数:5
相关论文
共 50 条
  • [21] Activity-based fluorescent probes that target phosphatases
    Zhu, Q
    Huang, X
    Chen, GYJ
    Yao, SQ
    TETRAHEDRON LETTERS, 2003, 44 (13) : 2669 - 2672
  • [22] Synthesis and Evaluation of Activity-based Sulfatase Probes
    Lenger, J. L.
    Hanson, S.
    Ennemann, E.
    Dierks, T.
    Sewald, N.
    JOURNAL OF PEPTIDE SCIENCE, 2010, 16 : 107 - 108
  • [23] Activity-based probes for protein tyrosine phosphatases
    Kumar, S
    Zhou, B
    Liang, FB
    Wang, WQ
    Huang, ZH
    Zhang, ZY
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (21) : 7943 - 7948
  • [24] Activity-based probes for biological discovery.
    Rosenblum, JS
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2004, 228 : U181 - U181
  • [25] Imaging of proteases using activity-based probes
    Zmudzinski, Mikolaj
    Malon, Oliwia
    Poreba, Marcin
    Drag, Marcin
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2023, 74
  • [26] Probes for activity-based profiling of plant proteases
    van der Hoorn, Renier A. L.
    Kaiser, Markus
    PHYSIOLOGIA PLANTARUM, 2012, 145 (01) : 18 - 27
  • [27] Selectivity aspects of activity-based (chemical) probes
    Heinzlmeir, Stephanie
    Mueller, Susanne
    DRUG DISCOVERY TODAY, 2022, 27 (02) : 519 - 528
  • [28] Selective activity-based probes for cysteine cathepsins
    Watzke, Anja
    Kosec, Gregor
    Kindermann, Maik
    Jeske, Volker
    Nestler, Hans-Peter
    Turk, Vito
    Turk, Boris
    Wendt, K. Ulrich
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (02) : 406 - 409
  • [29] Multifunctional activity-based chemical probes for sirtuins
    Sharma, Chiranjeev
    Donu, Dickson
    Curry, Alyson M.
    Barton, Elizabeth
    Cen, Yana
    RSC ADVANCES, 2023, 13 (17) : 11771 - 11781
  • [30] Development of Activity-Based Probes for Cathepsin X
    Paulick, Margot G.
    Bogyo, Matthew
    ACS CHEMICAL BIOLOGY, 2011, 6 (06) : 563 - 572