Decycling graphs

被引:2
|
作者
Beineke, LW [1 ]
Vandell, RC [1 ]
机构
[1] WESTERN MICHIGAN UNIV,KALAMAZOO,MI 49008
关键词
cycle; forest; grid; hypercube;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce the decycling number of a graph as the minimum number of vertices that must be removed in order to eliminate all cycles. After proving some general results, we focus on two families of graph products, the grids and the hypercubes. (C) 1997 John Wiley & Sons, Inc.
引用
收藏
页码:59 / 77
页数:19
相关论文
共 50 条
  • [1] Decycling bipartite graphs
    Hertz A.
    Journal of Graph Algorithms and Applications, 2021, 25 (01) : 461 - 480
  • [2] Decycling cubic graphs
    Nedela, Roman
    Seifrtova, Michaela
    Skoviera, Martin
    DISCRETE MATHEMATICS, 2024, 347 (08)
  • [3] Decycling regular graphs
    Punnim, Narong
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2005, 32 : 147 - 162
  • [4] Decycling bubble sort graphs
    Wang, Jian
    Xu, Xirong
    Gao, Liqing
    Zhang, Sijia
    Yang, Yuansheng
    DISCRETE APPLIED MATHEMATICS, 2015, 194 : 178 - 182
  • [5] Decycling Number of Some Graphs
    魏二玲
    刘彦佩
    运筹学学报, 1999, (01) : 24 - 28
  • [6] The Decycling Number of Regular Graphs
    Punnim, N.
    THAI JOURNAL OF MATHEMATICS, 2006, 4 (01): : 145 - 161
  • [7] The decycling number of outerplanar graphs
    Chang, Huilan
    Fu, Hung-Lin
    Lien, Min-Yun
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2013, 25 (04) : 536 - 542
  • [8] Decycling connected regular graphs
    Punnim, Narong
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2006, 35 : 155 - 169
  • [9] The decycling number of cubic graphs
    Punnim, N
    COMBINATORIAL GEOMETRY AND GRAPH THEORY, 2005, 3330 : 141 - 145
  • [10] The decycling number of outerplanar graphs
    Huilan Chang
    Hung-Lin Fu
    Min-Yun Lien
    Journal of Combinatorial Optimization, 2013, 25 : 536 - 542