Improving DORIS geocenter time series using an empirical rescaling of solar radiation pressure models

被引:52
|
作者
Gobinddass, M. L. [1 ,2 ]
Willis, P. [1 ,3 ]
de Viron, O. [1 ,4 ]
Sibthorpe, A. [5 ]
Zelensky, N. P. [6 ]
Ries, J. C. [7 ]
Ferland, R. [8 ]
Bar-Sever, Y. [5 ]
Diament, M. [1 ]
Lemoine, F. G. [9 ]
机构
[1] Inst Phys Globe, UFR Step, F-75205 Paris, France
[2] Inst Geog Natl, LAREG, F-77455 Marne La Vallee, France
[3] Inst Geog Natl, Direct Tech, F-94160 St Mande, France
[4] Univ Paris Diderot, UFR Step, F-75205 Paris, France
[5] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[6] SGT Inc, Greenbelt, MD 20770 USA
[7] Univ Texas Austin, Ctr Space Res, Austin, TX 78712 USA
[8] Geomat Canada, NRCan, Ottawa, ON K1A OE9, Canada
[9] NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, Greenbelt, MD 20771 USA
基金
美国国家航空航天局;
关键词
DORIS; Geocenter variations; Systematic errors; Solar radiation pressure; TERRESTRIAL REFERENCE FRAME; SEA-LEVEL RISE; ORBIT; SLR; TOPEX/POSEIDON; SATELLITE; TRACKING;
D O I
10.1016/j.asr.2009.08.004
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Even if Satellite Laser Ranging (SLR) remains the fundamental technique for geocenter monitoring, DORIS can also determine this geophysical parameter. Gobinddass et al. (2009) found that part of the systematic errors at 118 days and I year can be significantly reduced by rescaling the current solar radiation pressure models using satellite-dependent empirical models. Here we extend this study to all DORIS satellites and propose a complete set of empirical solar radiation parameter coefficients. A specific problem related to SPOT-5 solar panel realignment is also detected and explained. New DORIS geocenter solutions now show a much better agreement in amplitude with independent SLR solutions and with recent geophysical models. Finally, the impact of this refined DORIS data strategy is discussed in terms of Z-geocenter monitoring as well as for other geodetic products (altitude of high latitude station such as Thule in Greenland) and Precise Orbit Determination. After reprocessing the full 1993.0-2008.0 DORIS data set, we confirm that the proposed strategy allows a significant reduction of systematic errors at periods of 118 days and I year (up to 20 mm), especially for the most recent data after 2002.5, when more DORIS satellites are available for geodetic purposes. (C) 2009 COSPAR. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1279 / 1287
页数:9
相关论文
共 50 条
  • [31] Modeling of Solar Radiation in the Time Series Domain
    Alghoul, M. A.
    Sulaiman, M. Y.
    Azmi, B. Z.
    Abd Wahab, M.
    INTERNATIONAL ENERGY JOURNAL, 2006, 7 (04): : 261 - 266
  • [32] Time series analysis of solar radiation data
    Razali, Ahmad Mahir
    Gim, Tee Pei
    Zaharim, Azami
    Sopian, Kamaruzzaman
    NEW ASPECTS OF ENERGY, ENVIRONMENT, ECOSYSTEMS AND SUSTAINABLE DEVELOPMENT, PT 1, 2008, : 144 - +
  • [33] Improving solar radiation pressure modeling for GLONASS satellites
    Duan, Bingbing
    Hugentobler, Urs
    Hofacker, Max
    Selmke, Inga
    JOURNAL OF GEODESY, 2020, 94 (08)
  • [34] Improving solar radiation pressure modeling for GLONASS satellites
    Bingbing Duan
    Urs Hugentobler
    Max Hofacker
    Inga Selmke
    Journal of Geodesy, 2020, 94
  • [35] Improving shadows detection for solar radiation numerical models
    Diaz, F.
    Montero, H.
    Santana, D.
    Montero, G.
    Rodriguez, E.
    Mazorra Aguiar, L.
    Oliver, A.
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 319 : 71 - 85
  • [36] The total solar radiation time series simulation in Athens, using neural networks
    G. Mihalakakou
    M. Santamouris
    D. N. Asimakopoulos
    Theoretical and Applied Climatology, 2000, 66 : 185 - 197
  • [37] The total solar radiation time series simulation in Athens, using neural networks
    Mihalakakou, G
    Santamouris, M
    Asimakopoulos, DN
    THEORETICAL AND APPLIED CLIMATOLOGY, 2000, 66 (3-4) : 185 - 197
  • [38] Forecasting of preprocessed daily solar radiation time series using neural networks
    Paoli, Christophe
    Voyant, Cyril
    Muselli, Marc
    Nivet, Marie-Laure
    SOLAR ENERGY, 2010, 84 (12) : 2146 - 2160
  • [39] Improving the accuracy of global forecasting models using time series data augmentation
    Bandara, Kasun
    Hewamalage, Hansika
    Liu, Yuan-Hao
    Kang, Yanfei
    Bergmeir, Christoph
    PATTERN RECOGNITION, 2021, 120
  • [40] Empirical likelihood confidence regions in time series models
    Monti, AC
    BIOMETRIKA, 1997, 84 (02) : 395 - 405