Wrinkling transition in quenched disordered membranes at two loops

被引:7
|
作者
Coquand, O. [1 ,2 ]
Mouhanna, D. [1 ]
机构
[1] Sorbonne Univ, Lab Phys Theor Matiere Condensee, LPTMC, CNRS, F-75005 Paris, France
[2] Inst Mat Phys Weltraum, Deutsch Zentrum Luft & Raumfahrt, D-51147 Cologne, Germany
关键词
D O I
10.1103/PhysRevE.103.L031001
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the flat phase of quenched disordered polymerized membranes by means of a two-loop, weak-coupling computation performed near their upper critical dimension D-uc = 4, generalizing the one-loop computation of Morse et al. [D. C. Morse et al., Phys. Rev. A 45, R2151 (1992); D. C. Morse and T. C. Lubensky, Phys. Rev. A 46, 1751 (1992)]. Our work confirms the existence of the finite-temperature, finite-disorder wrinkling transition, which has been recently identified by Coquand et al. [O. Coquand et al., Phys. Rev. E 97, 030102(R) (2018)] using a nonperturbative renormalization group approach. We also point out ambiguities in the two-loop computation that prevent the exact identification of the properties of the novel fixed point associated with the wrinkling transition, which very likely requires a three-loop order approach.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Analysis of pulled axisymmetric membranes with wrinkling
    Libai, A
    Givoli, D
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2002, 39 (05) : 1259 - 1274
  • [42] BUCKLING AND WRINKLING OF THIN FILMS AND MEMBRANES
    Korznikova, E. A.
    Baimova, J. A.
    Dmitriev, S. V.
    Potekaev, A. I.
    Melnikova, E. A.
    RUSSIAN PHYSICS JOURNAL, 2015, 58 (08) : 1058 - 1062
  • [43] Dynamics of fractures in quenched disordered media
    Caldarelli, G
    Cafiero, R
    Gabrielli, A
    PHYSICAL REVIEW E, 1998, 57 (04): : 3878 - 3885
  • [45] THERMODYNAMICS OF FLUIDS IN QUENCHED DISORDERED MATRICES
    ROSINBERG, ML
    TARJUS, G
    STELL, G
    JOURNAL OF CHEMICAL PHYSICS, 1994, 100 (07): : 5172 - 5177
  • [46] Disordered loops in the two-dimensional antiferromagnetic spin-fermion model
    Enss, T.
    Caprara, S.
    Castellani, C.
    Di Castro, C.
    Grilli, M.
    NUCLEAR PHYSICS B, 2008, 795 (03) : 578 - 595
  • [47] Finite temperature magnetic phase transition features of the quenched disordered binary alloy cylindrical nanowire
    Vatansever, Z. D.
    Vatansever, E.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 701 : 288 - 294
  • [48] Nematic-isotropic transition in a lattice model with quenched disordered impurities: A Monte Carlo study
    Ilnytskyi, J
    Sokolowski, S
    Pizio, O
    PHYSICAL REVIEW E, 1999, 59 (04): : 4161 - 4168
  • [49] FORMATION OF MICRODOMAINS IN A QUENCHED DISORDERED HETEROPOLYMER
    SHAKHNOVICH, EI
    GUTIN, AM
    JOURNAL DE PHYSIQUE, 1989, 50 (14): : 1843 - 1850
  • [50] Growing interfaces in quenched disordered media
    Braunstein, LA
    Buceta, RC
    Díaz-Sánchez, A
    PHYSICA A, 1999, 266 (1-4): : 334 - 338