On non-Abelian Toda A2(1) model and related hierarchies

被引:1
|
作者
Demskoi, Dmitry K. [1 ]
Lee, Jyh-Hao [1 ]
机构
[1] Acad Sinica, Inst Math, Taipei 11529, Taiwan
关键词
algebra; integral equations; mathematical operators; Toda lattice; HYDRODYNAMIC-TYPE SYSTEMS; LAPLACE TRANSFORMATIONS; LIOUVILLE-TYPE; HYPERBOLIC SYSTEMS; RIEMANN INVARIANTS; LAX REPRESENTATION; SCALAR FIELDS; CHIRAL-TYPE; EQUATIONS;
D O I
10.1063/1.3267864
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study limiting cases of the two known integrable chiral-type models with three-dimensional configuration space. One of the initial models is the non-Abelian Toda A(2)((1)) model and the other was found by means of the symmetry approach by Meshkov and Demskoi [Theor. Math. Phys. 134, 351 (2003)]. The C-integrability of the reduced models is established by constructing their complete sets of integrals and general solutions. A description of the generalized symmetry algebras of these models is given in terms of operator mapping integrals into symmetries. The integrals of the Liouville-type systems are known to define Miura-type transformations for their generalized symmetries. This fact allowed us to find a few new systems of the Yajima-Oikawa type. We present a recursion operator for one them.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] THE NON-ABELIAN SOLITONS FOR THE SL(2,C) NON-ABELIAN TODA LATTICE
    POPOWICZ, Z
    [J]. INVERSE PROBLEMS, 1987, 3 (02) : 329 - 340
  • [2] Non-abelian discrete Toda chains and related lattices
    Bobrova, Irina
    Retakh, Vladimir
    Rubtsov, Vladimir
    Sharygin, Georgy
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2024, 464
  • [3] THE GENERALIZED NON-ABELIAN TODA LATTICE
    POPOWICZ, Z
    [J]. ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1983, 19 (01): : 79 - 81
  • [4] Maximally non-abelian Toda systems
    Razumov, AV
    Saveliev, MV
    [J]. NUCLEAR PHYSICS B, 1997, 494 (03) : 657 - 686
  • [5] Algebraic structure of the non-abelian Toda models
    Gomes, JF
    Da Silveira, FEM
    Zimerman, AH
    Sotkov, GM
    [J]. NONASSOCIATIVE ALGEBRA AND ITS APPLICATIONS, 2000, 211 : 125 - 136
  • [6] Hamiltonian structure of non-Abelian Toda lattice
    Gekhtman, M
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1998, 46 (03) : 189 - 205
  • [7] More non-Abelian loop Toda solitons
    Nirov, Kh S.
    Razumov, A. V.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (28)
  • [8] Solving non-Abelian loop Toda equations
    Nirov, Kh. S.
    Razumov, A. V.
    [J]. NUCLEAR PHYSICS B, 2009, 815 (03) : 404 - 429
  • [9] Hamiltonian Structure of Non-Abelian Toda Lattice
    M. Gekhtman
    [J]. Letters in Mathematical Physics, 1998, 46 : 189 - 205
  • [10] SU(2,R)q symmetries of Non-Abelian Toda theories
    Gomes, JF
    Sotkov, GM
    Zimerman, AH
    [J]. PHYSICS LETTERS B, 1998, 435 (1-2) : 49 - 60