Evaluation of Shipping Accident Casualties using Zero-inflated Negative Binomial Regression Technique

被引:34
|
作者
Weng, Jinxian [1 ]
Ge, Ying En [1 ]
Han, Hao [1 ]
机构
[1] Shanghai Maritime Univ, Coll Transport & Commun, Shanghai 201306, Peoples R China
来源
JOURNAL OF NAVIGATION | 2016年 / 69卷 / 02期
基金
中国国家自然科学基金;
关键词
Zero Inflated Negative Binomial Model; Safety; SOUTH CHINA SEA; SAFETY ASSESSMENT; VESSEL ACCIDENTS; STRAIT; DETERMINANTS; POISSON; FRAMEWORK; SEVERITY; ISTANBUL; BOSPORUS;
D O I
10.1017/S0373463315000788
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
This study develops a Zero-Inflated Negative Binomial (ZINB) regression model to evaluate the factors influencing the loss of human life in shipping accidents using ten years' ship accident data in the South China Sea. The ZINB regression model results show that the expected loss of human life is higher for collision, fire/explosion, contact, grounding, hull damage, machinery damage/failure and capsizing accidents occurring in adverse weather conditions during night periods. Sinking can cause the highest loss of life compared to all other accident types. There are fewer fatalities and missing people when the ship involved in an accident is moored or docked. The results also reveal that the loss of human life is associated with shipping accidents occurring far away from the coastal area/harbour/ports. The results of this study are beneficial for policy-makers in proposing efficient strategies to reduce shipping accident casualties in the South China Sea.
引用
收藏
页码:433 / 448
页数:16
相关论文
共 50 条
  • [21] A framework of zero-inflated bayesian negative binomial regression models for spatiotemporal data
    He, Qing
    Huang, Hsin-Hsiung
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2024, 229
  • [22] POISSON AND NEGATIVE BINOMIAL REGRESSION MODELS FOR ZERO-INFLATED DATA: AN EXPERIMENTAL STUDY
    Yildirim, Gizem
    Kaciranlar, Selahattin
    Yildirim, Hasan
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2022, 71 (02): : 601 - 615
  • [23] Modeling of Parking Violations Using Zero-Inflated Negative Binomial Regression: A Case Study for Berlin
    Hagen, Tobias
    Reinfeld, Nicole
    Saki, Siavash
    TRANSPORTATION RESEARCH RECORD, 2023, 2677 (06) : 498 - 512
  • [24] Parameter Estimation on Zero-Inflated Negative Binomial Regression with Right Truncated Data
    Saffari, Seyed Ehsan
    Adnan, Robiah
    SAINS MALAYSIANA, 2012, 41 (11): : 1483 - 1487
  • [25] Modeling shark bycatch: The zero-inflated negative binomial regression model with smoothing
    Minami, M.
    Lennert-Cody, C. E.
    Gao, W.
    Roman-Verdesoto, M.
    FISHERIES RESEARCH, 2007, 84 (02) : 210 - 221
  • [26] Estimation in zero-inflated binomial regression with missing covariates
    Diallo, Alpha Oumar
    Diop, Aliou
    Dupuy, Jean-Francois
    STATISTICS, 2019, 53 (04) : 839 - 865
  • [27] A constrained marginal zero-inflated binomial regression model
    Ali, Essoham
    Diop, Aliou
    Dupuy, Jean-Francois
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (18) : 6396 - 6422
  • [28] Statistical analysis of variability in TnSeq data across conditions using zero-inflated negative binomial regression
    Siddharth Subramaniyam
    Michael A. DeJesus
    Anisha Zaveri
    Clare M. Smith
    Richard E. Baker
    Sabine Ehrt
    Dirk Schnappinger
    Christopher M. Sassetti
    Thomas R. Ioerger
    BMC Bioinformatics, 20
  • [29] Bayesian estimation and case influence diagnostics for the zero-inflated negative binomial regression model
    Garay, Aldo M.
    Lachos, Victor H.
    Bolfarine, Heleno
    JOURNAL OF APPLIED STATISTICS, 2015, 42 (06) : 1148 - 1165
  • [30] Geographically Weighted Zero-Inflated Negative Binomial Regression: A general case for count data
    da Silva, Alan Ricardo
    de Sousa, Marcos Douglas Rodrigues
    SPATIAL STATISTICS, 2023, 58