Evaluation of Shipping Accident Casualties using Zero-inflated Negative Binomial Regression Technique

被引:34
|
作者
Weng, Jinxian [1 ]
Ge, Ying En [1 ]
Han, Hao [1 ]
机构
[1] Shanghai Maritime Univ, Coll Transport & Commun, Shanghai 201306, Peoples R China
来源
JOURNAL OF NAVIGATION | 2016年 / 69卷 / 02期
基金
中国国家自然科学基金;
关键词
Zero Inflated Negative Binomial Model; Safety; SOUTH CHINA SEA; SAFETY ASSESSMENT; VESSEL ACCIDENTS; STRAIT; DETERMINANTS; POISSON; FRAMEWORK; SEVERITY; ISTANBUL; BOSPORUS;
D O I
10.1017/S0373463315000788
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
This study develops a Zero-Inflated Negative Binomial (ZINB) regression model to evaluate the factors influencing the loss of human life in shipping accidents using ten years' ship accident data in the South China Sea. The ZINB regression model results show that the expected loss of human life is higher for collision, fire/explosion, contact, grounding, hull damage, machinery damage/failure and capsizing accidents occurring in adverse weather conditions during night periods. Sinking can cause the highest loss of life compared to all other accident types. There are fewer fatalities and missing people when the ship involved in an accident is moored or docked. The results also reveal that the loss of human life is associated with shipping accidents occurring far away from the coastal area/harbour/ports. The results of this study are beneficial for policy-makers in proposing efficient strategies to reduce shipping accident casualties in the South China Sea.
引用
收藏
页码:433 / 448
页数:16
相关论文
共 50 条
  • [1] Research on the Yangtze River Accident Casualties Using Zero-inflated Negative Binomial Regression Technique
    Wang Hao
    Yang Ya-dong
    Ma Yong
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION ENGINEERING (ICITE), 2016, : 72 - 75
  • [2] Combining zero-inflated negative binomial regression with MLRT techniques: An approach to evaluating shipping accident casualties
    Weng, Jinxian
    Yang, Dong
    Qian, Ting
    Huang, Zhi
    [J]. OCEAN ENGINEERING, 2018, 166 : 135 - 144
  • [3] A Zero-Inflated Negative Binomial Regression Model to Evaluate Ship Sinking Accident Mortalities
    Chai, Tian
    Xiong, De-qi
    Weng, Jinxian
    [J]. TRANSPORTATION RESEARCH RECORD, 2018, 2672 (11) : 65 - 72
  • [4] Modeling Tetanus Neonatorum case using the regression of negative binomial and zero-inflated negative binomial
    Amaliana, Luthfatul
    Sa'adah, Umu
    Wardhani, Ni Wayan Surya
    [J]. FIRST AHMAD DAHLAN INTERNATIONAL CONFERENCE ON MATHEMATICS AND MATHEMATICS EDUCATION, 2018, 943
  • [5] Bivariate zero-inflated negative binomial regression model with applications
    Faroughi, Pouya
    Ismail, Noriszura
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2017, 87 (03) : 457 - 477
  • [6] An alternative bivariate zero-inflated negative binomial regression model using a copula
    So, Sunha
    Lee, Dong-Hee
    Jung, Byoung Cheol
    [J]. ECONOMICS LETTERS, 2011, 113 (02) : 183 - 185
  • [7] A score test for testing a zero-inflated Poisson regression model against zero-inflated negative binomial alternatives
    Ridout, M
    Hinde, J
    Demétrio, CGB
    [J]. BIOMETRICS, 2001, 57 (01) : 219 - 223
  • [8] On estimation and influence diagnostics for zero-inflated negative binomial regression models
    Garay, Aldo M.
    Hashimoto, Elizabeth M.
    Ortega, Edwin M. M.
    Lachos, Victor H.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (03) : 1304 - 1318
  • [9] On estimation and influence diagnostics for zero-inflated negative binomial regression models
    Departamento de Estatstica, Universidade Estatual de Campinas, Brazil
    不详
    不详
    [J]. Comput. Stat. Data Anal., 3 (1304-1318):
  • [10] Marginalized zero-inflated negative binomial regression with application to dental caries
    Preisser, John S.
    Das, Kalyan
    Long, D. Leann
    Divaris, Kimon
    [J]. STATISTICS IN MEDICINE, 2016, 35 (10) : 1722 - 1735