MOTION BLUR KERNEL ESTIMATION USING NOISY INERTIAL DATA

被引:0
|
作者
Zhen, Ruiwen [1 ]
Stevenson, Robert L. [1 ]
机构
[1] Univ Notre Dame, Dept Elect Engn, Notre Dame, IN 46556 USA
关键词
Blur Kernel; Motion Path; Accelerometer; Deblur; Noise; IMAGE;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the case of motion blur due to unknown motion, most of the existing image deblurring algorithms rely on good initial estimate of the kernel or latent image obtained through blind deconvolution and only consider 3-dimensional camera motions. To overcome these problems, Joshi [1] presented a novel blur kernel estimation and image deblurring approach by integrating 6-dimensional inertial sensors with a camera. However, the drift in the estimated camera motion path introduced by inertial measurement noise was not well handled in Joshi's work. In this paper, we propose an alternating optimization scheme to move the drifted camera motion path to the correct position. The camera pose space in the projective motion blur model is replaced by a motion path set to compensate for path drift. Experiments are performed on synthetic and real images to show the effectiveness of our approach.
引用
收藏
页码:4602 / 4606
页数:5
相关论文
共 50 条
  • [1] Inertial sensor aided motion blur kernel estimation for cooled IR detector
    Singh, Kaustubh Saurabh
    Diwakar, Manoj
    Singh, Prabhishek
    Garg, Deepak
    OPTICS AND LASERS IN ENGINEERING, 2024, 175
  • [2] Robust Motion Blur Kernel Estimation by Kernel Continuity Prior
    Chen, Xueling
    Zhu, Yu
    Sun, Jinqiu
    Zhang, Yanning
    IEEE ACCESS, 2020, 8 : 46162 - 46175
  • [3] Motion Blur Kernel Rendering Using an Inertial Sensor: Interpreting the Mechanism of a Thermal Detector
    Lee, Kangil
    Ban, Yuseok
    Kim, Changick
    SENSORS, 2022, 22 (05)
  • [4] Motion Blur Kernel Estimation via Deep Learning
    Xu, Xiangyu
    Pan, Jinshan
    Zhang, Yu-Jin
    Yang, Ming-Hsuan
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (01) : 194 - 205
  • [5] KERNEL ESTIMATION FOR MOTION BLUR REMOVAL USING DEEP CONVOLUTIONAL NEURAL NETWORK
    Lu, Yanan
    Xie, Fengying
    Jiang, Zhiguo
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 3755 - 3759
  • [6] Weighted Linear Motion Deblurring with Blur Kernel Estimation using Consecutive Frames
    Jeong, Woo Jin
    Park, Jin Wook
    Lee, Dong-Seok
    Choi, Wonju
    Moon, Young Shik
    18TH IEEE INTERNATIONAL SYMPOSIUM ON CONSUMER ELECTRONICS (ISCE 2014), 2014,
  • [7] Estimation of motion blur kernel parameters using regression convolutional neural networks
    Varela, Luis G.
    Boucheron, Laura E.
    Sandoval, Steven
    Voelz, David
    Siddik, Abu Bucker
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (02)
  • [8] Robust Estimation of Motion Blur Kernel Using a Piecewise-Linear Model
    Oh, Sungchan
    Kim, Gyeonghwan
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (03) : 1394 - 1407
  • [9] Efficient Motion Blur Parameters Estimation under Noisy Conditions
    Mishra, S.
    Sengar, R. S.
    Puri, R. K.
    Badodkar, D. N.
    2014 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMPUTING RESEARCH (IEEE ICCIC), 2014, : 115 - 119
  • [10] Automatic blur-kernel-size estimation for motion deblurring
    Shaoguo Liu
    Haibo Wang
    Jue Wang
    Sunghyun Cho
    Chunhong Pan
    The Visual Computer, 2015, 31 : 733 - 746