Estimation of motion blur kernel parameters using regression convolutional neural networks

被引:0
|
作者
Varela, Luis G. [1 ]
Boucheron, Laura E. [1 ]
Sandoval, Steven [1 ]
Voelz, David [1 ]
Siddik, Abu Bucker [1 ]
机构
[1] New Mexico State Univ, Klipsch Sch Elect & Comp Engn, Las Cruces, NM 88003 USA
关键词
motion blur estimation; convolutional neural networks; regression; BLIND DECONVOLUTION;
D O I
10.1117/1.JEI.33.2.023062
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Many deblurring and blur kernel estimation methods use a maximum a posteriori approach or deep learning-based classification techniques to sharpen an image and/or predict the blur kernel. We propose a regression approach using convolutional neural networks (CNNs) to predict parameters of linear motion blur kernels, the length and orientation of the blur. We analyze the relationship between length and angle of linear motion blur that can be represented as digital filter kernels. A large dataset of blurred images is generated using a suite of blur kernels and used to train a regression CNN for prediction of length and angle of the motion blur. The coefficients of determination for estimation of length and angle are found to be greater than or equal to 0.89, even under the presence of significant additive Gaussian noise, up to a variance of 10% (SNR of 10 dB). Using our estimated kernel in a nonblind image deblurring method, the sum of squared differences error ratio demonstrates higher cumulative histogram values than comparison methods, with most test images yielding an error ratio of less than or equal to 1.25. (c) 2024 SPIE and IS&T
引用
收藏
页数:16
相关论文
共 50 条
  • [1] KERNEL ESTIMATION FOR MOTION BLUR REMOVAL USING DEEP CONVOLUTIONAL NEURAL NETWORK
    Lu, Yanan
    Xie, Fengying
    Jiang, Zhiguo
    [J]. 2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 3755 - 3759
  • [2] Linear Blur Parameters Estimation Using a Convolutional Neural Network
    A. V. Nasonov
    A. A. Nasonova
    [J]. Pattern Recognition and Image Analysis, 2022, 32 : 611 - 615
  • [3] Linear Blur Parameters Estimation Using a Convolutional Neural Network
    Nasonov, A., V
    Nasonova, A. A.
    [J]. PATTERN RECOGNITION AND IMAGE ANALYSIS, 2022, 32 (03) : 611 - 615
  • [4] Motion-blur kernel size estimation via learning a convolutional neural network
    Li, Lerenhan
    Sang, Nong
    Yan, Luxin
    Gao, Changxin
    [J]. PATTERN RECOGNITION LETTERS, 2019, 119 : 86 - 93
  • [5] Estimation of non-uniform motion blur using a patch-based regression convolutional neural network
    Varela, LUIs G.
    Boucheron, Laura E.
    Sandoval, Steven
    Voelz, David
    Siddik, Abu bucker
    [J]. APPLIED OPTICS, 2024, 63 (16) : E86 - E93
  • [6] A Coarse-to-fine Classification for Motion Blur Kernel Size Estimation with Cascaded Neural Networks
    Ye, Minyuan
    He, Lei
    Chen, Gengsheng
    [J]. 2019 IEEE 13TH INTERNATIONAL CONFERENCE ON ASIC (ASICON), 2019,
  • [7] Blind Estimation of Motion Blur Kernel Parameters Using Cepstral Domain and Hough Transform
    Shah, Mayana J.
    Dalal, Upena D.
    [J]. 2014 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2014, : 992 - 997
  • [8] MOTION BLUR KERNEL ESTIMATION USING NOISY INERTIAL DATA
    Zhen, Ruiwen
    Stevenson, Robert L.
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 4602 - 4606
  • [9] UNSUPERVISED CONVOLUTIONAL NEURAL NETWORKS FOR MOTION ESTIMATION
    Ahmadi, Aria
    Patras, Ioannis
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 1629 - 1633
  • [10] Robust Motion Blur Kernel Estimation by Kernel Continuity Prior
    Chen, Xueling
    Zhu, Yu
    Sun, Jinqiu
    Zhang, Yanning
    [J]. IEEE ACCESS, 2020, 8 : 46162 - 46175