Compact group analysis using weak gravitational lensing

被引:4
|
作者
Chalela, Martin [1 ,2 ]
Gonzalez, Elizabeth Johana [1 ,2 ,3 ]
Lambas, Diego Garcia [1 ,3 ]
Foex, Gael [4 ]
机构
[1] Inst Astron Teor & Expt IATE CONICET, Laprida 854,X5000BGR Cordoba, Cordoba, Argentina
[2] Univ Nacl Cordoba, FAMAF, Fac Matemat Astron & Fis, X5000BGR Cordoba, Cordoba, Argentina
[3] Univ Nacl Cordoba, Observ Astron Cordoba, Laprida 854,X5000BGR Cordoba, Cordoba, Argentina
[4] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany
基金
美国国家科学基金会;
关键词
gravitational lensing: weak; galaxies: groups: general; DIGITAL SKY SURVEY; 6TH DATA RELEASE; GALAXY GROUPS; DARK-MATTER; MASS PROFILES; SDSS-III; CLUSTERS; EVOLUTION; REDSHIFTS; DYNAMICS;
D O I
10.1093/mnras/stx242
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a weak lensing analysis of a sample of Sloan Digital Sky Survey compact groups (CGs). Using the measured radial density contrast profile, we derive the average masses under the assumption of spherical symmetry, obtaining a velocity dispersion for the singular isothermal spherical model, sigma(V) = 270 +/- 40 km s(-1), and for the NFW model, R-200 = 0.53 +/- 0.10 h(70)(-1) Mpc. We test three different definitions of CG centres to identify which best traces the true dark matter halo centre, concluding that a luminosity-weighted centre is the most suitable choice. We also study the lensing signal dependence on CG physical radius, group surface brightness and morphological mixing. We find that groups with more concentrated galaxy members show steeper mass profiles and larger velocity dispersions. We argue that both, a possible lower fraction of interloper and a true steeper profile, could be playing a role in this effect. Straightforward velocity dispersion estimates from member spectroscopy yield sigma(V) approximate to 230 km s(-1) in agreement with our lensing results.
引用
收藏
页码:1819 / 1829
页数:11
相关论文
共 50 条
  • [31] Accurate modeling of weak lensing with the stochastic gravitational lensing method
    Kainulainen, Kimmo
    Marra, Valerio
    [J]. PHYSICAL REVIEW D, 2011, 83 (02):
  • [32] Weak gravitational lensing and X-ray analysis of Abell 2163
    Squires, G
    Neumann, DM
    Kaiser, N
    Arnaud, M
    Babul, A
    Bohringer, H
    Fahlman, G
    Woods, D
    [J]. ASTROPHYSICAL JOURNAL, 1997, 482 (02): : 648 - 658
  • [33] Physical component analysis of galaxy cluster weak gravitational lensing data
    Marshall, Phil
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2006, 372 (03) : 1289 - 1298
  • [34] A weak gravitational lensing study of Abell 1689
    King, LJ
    [J]. NEW ERA IN COSMOLOGY, 2002, 283 : 186 - 189
  • [35] Gravitational weak lensing by a naked singularity in plasma
    Atamurotov, Farruh
    Ghosh, Sushant G.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (06):
  • [36] Mapping the dark matter with weak gravitational lensing
    Schneider, P
    [J]. LOOKING DEEP IN THE SOUTHERN SKY, 1999, : 51 - 58
  • [37] The general theory of secondary weak gravitational lensing
    Clarkson, Chris
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2015, (09):
  • [38] Weak Gravitational Lensing and Its Cosmological Applications
    Hoekstra, Henk
    Jain, Bhuvnesh
    [J]. ANNUAL REVIEW OF NUCLEAR AND PARTICLE SCIENCE, 2008, 58 : 99 - 123
  • [39] Weak gravitational lensing in fourth order gravity
    Stabile, A.
    Stabile, An.
    [J]. PHYSICAL REVIEW D, 2012, 85 (04):
  • [40] Radio weak gravitational lensing with VLA and MERLIN
    Patel, P.
    Bacon, D. J.
    Beswick, R. J.
    Muxlow, T. W. B.
    Hoyle, B.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 401 (04) : 2572 - 2586