TiO2 Rutile Nanorod Arrays Grown on FTO Substrate Using Amino Acid at a Low Temperature

被引:10
|
作者
Hayami, Yutaka [1 ]
Suzuki, Yoshikazu [1 ]
Sagawa, Takashi [1 ]
Yoshikawa, Susumu [1 ]
机构
[1] Kyoto Univ, Inst Adv Energy, Kyoto 6110011, Japan
关键词
TiO2; Rutile; Nanorod Array; Amino Acid; Dye-Sensitized Solar Cells; SENSITIZED SOLAR-CELLS; PHOTOCATALYTIC ACTIVITY; TITANATE NANOTUBES; NANORODS/NANOPARTICLES TIO2; TITANIUM; PERFORMANCE; NANOPARTICLES; FABRICATION; NANOWIRES; ELECTRODE;
D O I
10.1166/jnn.2010.1900
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Vertically aligned single-crystalline TiO2 rutile nanorod arrays were synthesized on FTO transparent conductive substrates, via the hydrolysis of TiCl4 under the co-existence of amino acid catalysts. Using TiO2 seed nanocrystals (prepared from Ti(IV) ethoxide, calcined at 450 degrees C for 1 h), TiO2 rutile nanorod arrays grew at a relatively mild temperature of 95 degrees C for 2 days. The growth speed and morphology of nanorod array were controllable by changing the type and concentration of amino acid. XRD analysis revealed that the TiO2 nanorod arrays were composed of highly crystalline rutile phase even without calcination. Preliminary dye-sensitized solar cell performance was also reported.
引用
收藏
页码:2284 / 2291
页数:8
相关论文
共 50 条
  • [31] Photoelectrochemical determination of Pb2+ ions by using TiO2 nanorod arrays grown on FTO substrates via a facile two-stage hydrothermal route
    Li, Shengping
    Gu, Xiuquan
    Zhao, Yulong
    Qiang, Yinghuai
    Zhang, Shuang
    [J]. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2016, 27 (08) : 8455 - 8463
  • [32] Rutile TiO2 nanorod arrays directly grown on Ti foil substrates towards lithium-ion micro-batteries
    Dong, Shanmu
    Wang, Haibo
    Gu, Lin
    Zhou, Xinhong
    Liu, Zhihong
    Han, Pengxian
    Wang, Ya
    Chen, Xiao
    Cui, Guanglei
    Chen, Liquan
    [J]. THIN SOLID FILMS, 2011, 519 (18) : 5978 - 5982
  • [33] Rutile TiO2 nano-branched arrays on FTO for dye-sensitized solar cells
    Wang, Hua
    Bai, Yusong
    Wu, Qiong
    Zhou, Wei
    Zhang, Hao
    Li, Jinghong
    Guo, Lin
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (15) : 7008 - 7013
  • [34] Rutile TiO2 Nanorod arrays grown on graphite foil as binder-free flexible electrode for sodium-ion batteries
    Tai, Yeh Ching
    Yang, Min-Han
    Chiu, Hsin-Tien
    Lee, Chi-Young
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [35] In situ grown TiO2 nanorod arrays functionalized by molecularly imprinted polymers for salicylic acid recognition and detection
    Xiong, Xiuxiu
    Li, Chao
    Yang, Xiaoyu
    Shu, Yun
    Jin, Dangqin
    Zang, Yang
    Shu, Yusheng
    Xu, Qin
    Hu, Xiao-Ya
    [J]. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2020, 873
  • [36] Hydrothermal Etching Treatment to Rutile TiO2 Nanorod Arrays for Improving the Efficiency of CdS-Sensitized TiO2 Solar Cells
    Wan, Jingshu
    Liu, Rong
    Tong, Yuzhu
    Chen, Shuhuang
    Hu, Yunxia
    Wang, Baoyuan
    Xu, Yang
    Wang, Hao
    [J]. NANOSCALE RESEARCH LETTERS, 2016, 11
  • [37] Hydrothermal Etching Treatment to Rutile TiO2 Nanorod Arrays for Improving the Efficiency of CdS-Sensitized TiO2 Solar Cells
    Jingshu Wan
    Rong Liu
    Yuzhu Tong
    Shuhuang Chen
    Yunxia Hu
    Baoyuan Wang
    Yang Xu
    Hao Wang
    [J]. Nanoscale Research Letters, 2016, 11
  • [38] Synthesis of nanosized rutile TiO2 powder at low temperature
    Tang, ZL
    Zhang, JY
    Cheng, Z
    Zhang, ZT
    [J]. MATERIALS CHEMISTRY AND PHYSICS, 2003, 77 (02) : 314 - 317
  • [39] Low temperature fabrication of nanoflower arrays of rutile TiO2 on mica particles with enhanced photocatalytic activity
    Gao, Qiang
    Wu, Xiaomei
    Fan, Yueming
    Zhou, Xiya
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 579 : 322 - 329
  • [40] Synergistic effect of carbon microstructure and topography of TiO2 nanorod arrays on hemocompatibility of carbon/TiO2 nanorod arrays composites
    Hong-Peng Chen
    Hui-Ling Chen
    Di-Hu Chen
    Min Chen
    [J]. Journal of Materials Science, 2014, 49 : 5299 - 5308